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The EPR responses of inhomogeneously broadened electron spin systems are
considered in detail under the assumption that a spin temperature situation in the
rotating reference frame obtains in the constituent spin packets. Expressions are
derived for the rapid passage and slow passage responses of such systems, including
situations where magnetic field modulation and subsequent phase sensitive first
harmonic detection is employed. It is shown that for rapid passage situations in
which wn, Ty > 1 (where wn, is the angular frequency of the magnetic field modulation)
a dispersive response 7 out of phase with the modulation is obtained, whereas when
waT; €1 aresponse is obtained in quadrature with the modulation, both of which
are in close agreement with experiment. Further, in very inhomogeneously broad-
ened systems the first harmonic dispersive response has an absorption type shape
given by G(4), where G(4) describes the inhomogeneous distribution of local fields,
which is of the same form as the absorption response obtained under slow passage.
In the slow passage regime it is shown that the saturation behavior of the system
is strongly dependent on the relative values of the Zeeman spin-lattice relaxation
time T and the spin-spin reservoir relaxation time T,,. For situations in which Ty =
T, the saturation behavior of Bloembergen er al. is predicted, whereas when T, € T
the saturation behavior observed by Castner is obtained. Finally, techniques that
allow measures of the spin packet width, T,; and T, are discussed.

INTRODUCTION

Electron spin systems whose constituent spins have a distribution of resonant
frequencies are commonly encountered in electron paramagnetic resonance (EPR)
studies (/-3). Such “inhomogeneously broadened” systems arise when the paramagnetic
spins are relatively dilute and localized to particular regions of the sample. The spins
may therefore experience local magnetic fields due to contact interactions with nearby
nuclei, inhomogeneities in the applied magnetic field, or anisotropy of the g-tensor.

The slow passage response of very inhomogeneously broadened systems is well
described by the ‘“‘spin-packet” approach suggested by Portis (4) and subsequently
extended by Castner (5). In these formulations each spin packet is characterized as a
(homogeneously broadened) spin or group of spins with the same resonant frequency.
The net inhomogeneously broadened response is then obtained as a convolution of the
individual packet responses with a function describing the inhomogeneous distribution
of the packet resonant frequencies due to the local fields. Castner (5) assumes the spin
packet width (written here as 1/T) to be a variable parameter, and the fact that 1/7T
is observed to increase as the paramagnetic spin concentration is raised suggests
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that the spin packet width reflects the strength of the spin—spin interactions present
in the sample. Under these assumptions a functional form of the saturation behavior
in inhomogeneous systems may be obtained for various values of an inhomogeneity
parameter a = 1/T; Adwg (where dwg is the width of the inhomogeneous distribution
function), which gives good agreement with experiment.

In the rapid passage regime the situation is somewhat more confused. Portis (6)
has given a description of rapid passage in very inhomogeneously broadened systems
(a = 0) arriving at results that agree, at least qualitatively, with experiment. This theory
however, provides no parameter corresponding to the spin packet width that reflects
the strength of spin—spin interactions. The situation is further complicated by the usual
experimental device of increasing sensitivity by using magnetic field modulation and
subsequent first harmonic detection. As described by Portis (6), the contributions of
the individual spins to the first harmonic signal become a rather complicated expansion
of the individual spin susceptibilities, which do not converge for many experimental
situations. A detailed analysis of the many special rapid passage conditions and corre-
sponding EPR responses that may be obtained has been presented by Weger (7).

In the present work the slow and rapid passage responses of inhomogeneously
broadened systems are analysed in a manner analogous to that of Castner (5), except
that a spin temperature situation in the rotating reference frame (8) is assumed for the
spin packets. The response of the individual spin packets is obtained using the spin
temperature formalism to include situations where sinusoidal magnetic field modulation
and subsequent first harmonic detection is employed. The net response of the entire
inhomogeneous system is then given by the convolution of a function describing the
distribution of local fields with these individual packet responses.

The suggestion that a rotating frame spin temperature situation exists in inhomo-
geneously broadened electron spin systems has been well discussed by Atsarkin and
Rodak (9), and offers good agreement with experiment. These authors, however,
were primarily concerned with the response of the system to irradiation at a particular
frequency, rather than the more usual situation where the resonance is swept by varia-
tion of the magnetic field, which is the case explicitly considered here.

In the following section the spin packet concept is discussed, and the operational
definition employed in this work is explained. Subsequently, in the section Spin
Temperature Theory the relevant spin temperature formulation is outlined, and a
theoretical form of the rapid and slow passage responses of inhomogeneously broadened
electron spin systems is obtained. Finally, in the section Comparison with Experiment,
the excellent agreement between theory and experiment is demonstrated.

THE SPIN PACKET

The spin packet concept proposed by Portis (4) applies rigorously to a system of
noninteracting spins. In the case of EPR each spin packet then consists of a single
electron spin, the response of which is lifetime broadened by the spin-lattice relaxation
rate 1/7;. The inhomogeneously broadened nature of the resonance is produced by
focal magnetic fields (usually contact interactions with nearby nuclear spins) which
provide a distribution of possible resonant frequencies. Thus the homogeneously
broadened response of each spin (or spin packet) has the “spin packet width” 1/T, and
a characteristic resonant frequency.
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The Castner (5) extension of the Portis theory assumes that more than one spin may
be in a given spin packet, and the spin packet width is then a variable parameter. This
proposal provides good agreement with experiment but has produced some confusion
about the nature of the spin packet entity, as it implies that while intrapacket spin—spin
interactions are strong enough to result in a homogeneously broadened resonance
the interpacket spin-spin interactions are negligible. The criteria for a spin to be a
member of a spin packet are therefore somewhat arbitrary, and interpacket spectral
spin diffusion processes are not explicitly considered.

In this work an alternative model of the spin packet is proposed which applies
particularly to electron spins which are a minority species randomly distributed in a
host lattice and where the dominant electron spin-spin interactions are exchange
processes. There is good evidence (/1) to suggest that as the concentration of such
“impurity” spins is increased, local clusters of two or more strongly interacting spins
are formed until, at high enough concentrations, the cluster may be thought to include
all the spins in the sample. As has been well discussed by Anderson (12), if the exchange
rates between spins in a particular cluster are much faster than the resonant frequency
differences between them (produced by the local environments of each spin), a single
homogeneously broadened ‘‘exchange narrowed” resonance is observed at a frequency
corresponding to the mean resonant frequency of the constituent spins. On the other
hand, if the exchange rate is slower than the resonant frequency separations, the res-
onances become ‘‘exchange broadened” and maintain their spectral separation. We
may therefore picture a spin packet as a cluster of highly coupled spins (which therefore
have a single exchange narrowed resonant frequency) where the dominant contribution
to the spin packet linewidth arises from the relatively weak interactions that the spins
“inside” the packet experience with other spins that have resonant frequencies which are
distinct from the packet resonant frequency. This model includes such processes as
spectral diffusion in a natural manner. It should be noted, however, that this statistical
description will be less correct at low impurity concentrations were the spin packet may
be more correctly analyzed as, for example, a two or three spin system (13).

The spin Hamiltonian of an inhomogeneously broadened spin system may be written
as

x=;w,s,,+-}‘,zj H3 [1]
1)
where o, is the resonant frequency of the ith spin and J¢,* represents the spin-spin
interactions (exchange and dipolar) between the ith and jth spins. This Hamiltonian
may be separated into parts corresponding to each of the highly coupled clusters or
spin packets according to

N
f=%:9fk; fk=tzlwlsiz+9f;’f [2]
where n, is the number of spins in the kth spin packet, and
Ay
Hp=43 S

The fast intracluster exchange processes that have been used to define the spin packet will
result in the distribution of w, over the cluster making a negligible contribution to the
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packet linewidth. The resonant frequency of this exchange narrowed packet resonance
is therefore

3

1
wk.:— [ON
My ’
i=1

and the packet Hamiltonian is, to a very good approximation, given by
e
K=, 2 S +H7. [3]
i=1

SPIN TEMPERATURE THEORY

In this section the slow and rapid passage resonant responses of an inhomogeneously
broadened electron spin system are derived under the assumption that a rotating frame
spin temperature situation exists in each of the constituent spin packets. The net
response of the system is then characterized as the convolution of the packet response
with a function describing the distribution of resonant frequencies that the packets
may exhibit. We initially, therefore, obtain the homogeneously broadened packet
response using the spin temperature formulation.

In the presence of the irradiating microwave field, the packet Hamiltonian obtained
in the previous section may be written

H =w, > S;;+yH cos(wt) > S+ H [4]
7 J

where H, is the amplitude of the applied microwave field and where the subscripts &
have been suppressed. It is also understood that the summations are over the », spins
in the packet. Moving into the frame rotating at w via the transformation U, = ¢'' > §;

we obtain
H =43 S, +vH, ; S+ L [5]
J

where the superscript ~ indicates the rotating frame, 4 = w, — w and where only the

secular part ., of the spin-spin Hamiltonian has been included, which is a good

first-order approximation. Subsequently, following Clough (/4) and Clough and Scott

(15), we move into the tilted rotating frame such that the z axis is aligned along the

effective magnetic field via the transformation U, = ¢/* > S,, where ¢ = tan™*(yH,/4).
J

We obtain
U, #U'=w, 3 S+ U 5 U3 [6]
7

where o, = (4% +y>H?)2, The approximation now made is that ¢ is small, thus
allowing the identification U, = 1 — i¢ > S;,. This approximation indicates that our
5

equations will not be strictly correct for those spins very near resonance. However,
as the condition ¢ < 1 will be obeyed by the vast majority of spins in an inhomogene-
ously broadened system (especially by those spins “outside” the spin packet we are
considering) we may consider that most of the observed response arises from such
spins and that the approximation is therefore valid. We obtain

Uzj UEI = we Z sz + %;s + ld) Z [#;5’ Sjy] [7]
J J
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to first order in ¢. We identify U,/ PU~'=#, + V where #,=w, > S;, + #., and
7
the perturbation V' =i¢ 2, [#,S,] It is important to note the role played by V.

J

As both the Zeeman and spin—spin terms in #, commute with each other, but do not
commute with V, the perturbation couples the Zeeman and spin—spin reservoirs which
would otherwise be independent. This perturbation therefore allows the transfer of
Zeeman energy to the spin-spin reservoir, which is necessary for spectral diffusion
(and subsequent broadening of the spin packet) to occur. As ¥ =0 when H, =0, we
may expect to observe larger spin-packet widths when the microwave irradiation is on
than when it is off. Such effects have recently been observed by Taylor et al. (16) in a
study of the spin-echo response of an inhomogeneously broadened phosphorus-doped
silicon sample to a two pulse microwave stimulation. This result serves to give added
confidence in both the spin-temperature approach and the spin-packet model of the
previous Section. It may also be noted that this larger spin-packet width in the presence
of H, corresponds to the “instantaneous diffusion” effect of Klauder and Anderson
.

Returning to Eq. [7] we move into the interaction representation via the transforma-
tion U; = '*¥0' where it is easily shown that

dp*/dt = (ifk) [p*, V()] 8]

where p* is the density matrix of the system in the interaction representation and V*(¢) =
Us(1) VU3Y(r). Solving this equation by the normal method of successive iterations,
we obtain

4 1
. .\ 2
pO=p 0+ [ O v*eNar+ (5] [ 1L vearar )
o "o
to second order in ¢, or, equivalently, ¥. Upon moving back into the simply rotating

frame via the inverse transformation p(f) = U;* U3 (¢) p*(r) Us(¢) U, (where j(¢) is the
density matrix in the rotating frame) it is straightforward to show that

PO)=50)+i6 3 50) 8,1+ 5 [ 150, V' =~ )ar

+(%) f f [FO), V(" — )], V(t' — t)dt"dt’ [10]
to second order in ¢. Thus we obtain
d~ . . s\2 by .
‘;(t’) =1 1O, VOl + (% ) f [150), V (= D)1, V(0)] d= [11]

where the limits of the integral have been extended, as the commutator in the integral
is very small except at very short times. At ¢t = 0 (i.e. before the microwave irradiation
is switched on) we obtain from Eq. [5] that

p(0) = Ce~tez+sxiv [12]
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where Z=—A4 3% §;,; C is a normalizing constant such that Trp(0) =1 and « and §
J

are the initial “inverse” Zeeman and spin-spin temperatures, respectively. We now
proceed to calculate the equation of motion of the z component of the magnetization
in the rotating frame, assuming it is isolated from the lattice, via the relation

dM, dp(t)

= =yhTr(7 S,.,)- [13]

The calculation of the trace in the above expression has been performed by Goldman
(8). He obtains, for the particular form of the perturbation ¥ we employ, that

Tr(d’fT(t’)Zs,,)= —nw%g(we)(’;—f;—ﬂi) [14]

where w,? = y* H,? and where

o0

S f TH(S,, S,u(1)) cos(w, ) d. (5]
nT.(z s,z.x)o
J

We note that g(w,) is the shape of the absorption signal from the packet at low micro-
wave level.
We examine the form of the correlation function

glw,) =

G(x) = Tr( S S S,-x(r)) / [Tr s 5},] [16]
J 7 |
in Eq. [15]. In this work we assume that
G(1)=e"/Ts [17]

where T} is the effective “T,” of the spin packet and corresponds to the time necessary
for a spin temperature situation to obtain in the spin packet after the microwave irradia-
tion is applied. The assumption expressed by Eq. [17] is similar to that made by Clough
and Scott (15). In Clough and Scott’s work, however, 1/T refers to the rate at which
equilibrium is established between all the spins experiencing different local fields,
whereas in this work 1/T7 refers only to the rate at which equilibrium is established for
spins in the same packet which therefore experience effectively the same magnetic field.
Itis also important to note that the exponential form of G(z) corresponds to a Lorentzian
profile in the frequency domain. As it is suggested in this work that the spin packet
approach is valid when spectral diffusion occurs, Eq. [17] implies that the “diffusion
envelope” obtained by exciting an inhomogeneously broadened system at a particular
frequency w, and monitoring the amount of excitation that spins at different resonant
frequencies experience, should be a Lorentzian profile about w. The analysis by Klauder
and Anderson (17) of the data due to Mims et al. (18) shows that the diffusion envelope
is indeed Lorentzian and, furthermore, that such Lorentzian diffusion may be expected
in all inhomogeneously broadened paramagnetic spin systems. These results give some
justification for the assumed exponential form of G(r).
Upon substituting the relation [17] into Eq. [15] we have that

g(we) = Ty/n(l + (42 + 0}) T3). [18]
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Similarly, the sine Fourier transform of G(7) may be written
g'(w,) = AT3/n(l + (4% + 0} T3. [19]

Upon substituting relation [14] back into Eq. [13], we obtain the equation of motion
of the z component of the magnetization as

dM,Jdt = 70? gler) [M, ~ Bavh] 20]

excluding the effects of spin-lattice relaxation.
Similarly, it can be shown that the inverse spin-spin temperature f obeys the relation

df _ nwig(w.) 4
dt~ yhD?

D?=Tr# I/Tr 3 Sj,.where D gives a measure of the width of the frequency dis-

[M, — BAyh] [21]

tribution of the I;acket, and we may therefore write 7, = 1/ D, by making reference to
Eq. [18] when w, is small. Equations [20] and [21] are the Provotorov (19) equations
in the absence of spin—lattice relaxation.

The dispersive and absorptive responses of the packet may be calculated from the
density matrix in the rotating frame given by Eq. [11], according to the relations

U(A)=<; 5,) =503 5,) 2]

u(4) =<.Jz SJ,>=Tr(ﬁ(r) 3 5,) (23]

where v(4) and u(A) are the absorptive and dispersive responses respectively. As shown
by Goldman (8), upon calculation of the traces one obtains

u(4) = nw,[M, — BAyh] g(w.) [24]

and
u(4) = 0, yhf + nw, g'(w,) (M, — BAyh). [25]

The derivation of the resonant responses of the spin packet therefore necessitates
calculation of § and M, — By from Eqgs. [20] and [21] when the effects of spin relaxa-
tion are included. The resulting expressions may then be introduced into Eqgs. [24] and
[25], thus obtaining the observed absorption and dispersion.

Expressions are now derived for the absorption and dispersion of the spin-packet
under conditions of rapid passage (the packet response is traversed in a time much
shorter than the spin—lattice relaxation times of the system) and under the opposite
condition of slow passage. The usual experimental situation in which sinusoidal
magnetic field modulation and subsequent phase sensitive first harmonic detection is
employed is considered specifically. It is interesting to note that the experimental situa-
ation is substantially simpler for the electron spins under discussion than for the lower
frequency nuclear spins. This is primarily due to the fact that complicating effects (8)
due to “rotary saturation” (power is absorbed from the modulating field) and non-
adiabatic responses which may occur when the modulation frequency w,, > yH, occur
only at rather high modulation frequencies for reasonable H,’s, due to the larger elec-
tronic gyromagnetic ratio y. Such experimental situations can usually be easily avoided.
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Rapid Passage

The rapid passage spin-packet response is obtained under the condition that the time
At taken to sweep through the packet obeys the inequality Ty € At < T, T,,. Thus, after
a time T the system has established a spin temperature and, as the Zeeman and spin—
spin terms are coupled by the irradiation applied, this temperature is the same for both
reservoirs. The density matrix of the system in the rotating frame is therefore

p= ce~BErX+R') [26]

where X = w, > §,. The effects of spin relaxation may be included as
J

KZ> [ dp\ (Z>—<Z>
dt _Tr(zﬁ)— T,
dX> [ dp\ (X>
dr Tr( E) T,
dH > L dp\  (H
— = Tr(éfss d_t) — T. 27

where T, T, and T,, are the spin lattice relaxation times of the Zeeman, microwave,
and spin-spin reservoirs respectively. Summing the system of equations [27], it is
straightforward to show that

8 A2+w}+DZJ
‘ﬁ__ I, T, T Brwo 4 (28]
dt 4% + w? + D? T, (4% + w? + D?)

In this work it is assumed that T, = T, as the microwave irradiation and the spin-
spin terms are in good contact. Equation [28] may then be rewritten as
db_ B __B@i+D) . B4 9]
dt T, T(4*>+wi+ D?) T(4%°+ w?+ D?) -
where T};! = (T, — T,)/T, T,,. Equation [29] describes the effects of spin relaxation
in the rotating frame when the rapid passage conditions are observed.
From Eq. [21] it is noted that in order to completely characterize the time dependence
of B it is necessary to know the time dependent evolution of x = M, — fAph. We follow
Goldman (8) and note that, employing Eqs. [20] and [21]*

dx/dt = —nw? g(we.) x — (03[ D?) nw? g(w,) x — 4Byh (0]
=—(x/7) — 4B
where
1/t = nw?g(w,)[1 + (4% + w})/D].
Using the relation [18], and identifying 1/7T5; = D we have that
1=w?T, [31]

1 Tt should be recognized that the variable 4 in Eqs. [20] and [21] is really e, = (4% + w?)* = 4(1 +
(#*/2)) which is equal to 4 to first order in ¢. However, when factors of O(4?) are considered theexplicit
form w. should be used in order to include the w? dependence.
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We make the “adiabatic” passage condition that 4 and § do not vary appreciably
during the time 7. Formal integration of Eq. [30] then results in the relation

x =—AByhjw? Ts. [32]

It is important to realize that the adiabatic passage condition gives a strict upper
limit to the modulation frequency w,,. Given that the frequency width of the packet
response is 1/7 the condition states that this width must be swept in a time much longer
than <. In the case where magnetic field modulation is employed, we write A(f) = 4 +
yH_,sin wy, t. Thus the maximum rate dA/dt at which the field is swept is y H,,, 0., and we
may write the adiabatic rapid passage condition as

H, o, <yHj. [33]

Upon substituting the relation [32] into Eq. [21] and including the effects of spin-
lattice relaxation as given by Eq. [29], we obtain an equation describing the time de-
pendent evolution of § as

a_ BA(2) 4(1) _ B(w} + D?) Brwo A(2) )
dt AP+ @i+ D* T, (A()? + w3+ D?) ' T(4(t)?+ w? + D?)

The A(t) are written explicitly as functions of time in order to emphasize that they
are sinusoidally varying with time. Equation [34] is solved to a second-order approxi-
mation in the Appendix for the two extremes @, T3 » 1 and w,,, T; < 1. In the case when
o, T, > 1 we obtain the first harmonic response as

wo 4%2yH,, 5y2H?
ﬂl(t) - ﬂL 0 Y [1 . ” m

0,0

[34]

2

[35]
where 6 =42+ w3+ D*+y*H2/2 and ¢, = 4>+ w? + D* For w,T, <1 the first
harmonic response may be written

2 2 2.2 2 §
B = ﬂLwow;le pach [y Hon + A%+ Ay H YGH‘“J sin(wmt—g)

2 AZ
] sin{(wy, t — m) + DBy @0 4%y Hye sin(

T
Wyl + =
W Ty 04 6> m )

4

DzﬂLonl)’Hm[ 2( . VHR\

+ Ty 0° 1+3(A _4_)] Sinfeon !~ 7) 56}
2 2

+ﬂLwo)’Hm [1 +§(2A2_Y f“‘)] sin{wg 1).

By employing relations [32], [35], and [36] we are now in a position to calculate the
absorptive and dispersive packet responses. The dispersion is given by

Hma)m( AT5 cos(wp 1)
yH?2 \1+(42+ 0} T3 )

As we obey the adiabatic condition H,, w,, € yH? we obtain to a very good approxima-
tion that

u(A)=a)1ﬁ[1 - [37]

u(4) = w, fyh. [38]

A similar analysis for the absorption reveals that it is smaller than the dispersion by
the factor ¢ = H,,w,,/yH? and is therefore effectively zero. Thus we obtain the result
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that only the dispersive component, which is directly proportional to the spin tempera-
ture B, is observable.

The net rapid passage first harmonic response U;(4) from the inhomogeneously
broadened system is then obtained as a convolution of the packet responses with a
normalized function G(4) describing the distribution of local fields. We obtain

Ui(d)= vk f G(4)Bi(4—-4')d4'. [391

A full discussion of the response U,(4) in the limits w,, T, » 1 and w,, T, < 1 is presented
in the next Section.

Slow Passage

The basic slow passage criterion employed here is that the time Ar taken to sweep
through the packet response obeys the inequality At » Ts, Ty, Ty, As T, is the longest
of these characteristic times, this slow passage condition implies the inequality

mel<l/yT3Hm~ [40]

The situation becomes somewhat simpler if it can be assumed that the “mixing time”
W-1 where

W = nw? g(w,) [41]

that is characteristic of Eqs. [20] and [21], is much less than the time taken to sweep
through resonance. This may be written as the inequality

Wn Hp €yH2[1 + T32(4* + wd). [42]

Obviously, this condition will not be obeyed far from resonance. As most of the
packet response will arise near 4 ~ 0, however, it is a good approximation to say that
W=1is less than the time taken to sweep through resonance if w, H,, < yH?, which is
of course, the adiabatic condition, It is important to note that this condition is far more
easily obeyed for electron spins than for nuclear spins, and thus that many of the com-
plications due to nonadiabaticity discussed by Goldman (§) may be avoided.

If both the slow passage and adiabatic passage conditions are obeyed, the Zeeman
and spin-spin reservoirs will be in equilibrium with the sinusoidally varying magaoetic
field. The equations of motion of the z component of the magnetization and the spin—
spin temperature # including the effects of relaxation may then be written from Egs.
[20] and [21] as

sz/dt=_nwfg(we) [Mz ‘—ﬁAyh]‘f'(MO_Mz)/Tl {43]

where M, = vAf, w, and

df _noiglw,)4 B :

= D [M, — pAvyh] T [44]
As 4 is slowly varying compared to W, 1/T,, and 1/T,,, we may therefore solve for the
equilibrium values of § and M, — fAyA, obtain the dispersion and absorption using
Eqgs. [24] and [25], and subsequently obtain the first harmonic response from a Fourier
analysis of these expressions.
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A solution of Egs. [43]'and_[44] under the equilibrium conditions dM./dt = dp/dt =
0 is easily obtained as

'}’hﬁ - Mowfg(we) ATss [45]
AT,
D2(1 + nw?g(w,) [Tl + D2 J)
M, — BAyh = My [46]
2 4*T,,
1 + nw? g(w,) [T1 + e J

These expressions may be introduced into Eqs. [24] and [25] to obtain the slow passage
absorptive and dispersive spin packet responses

o(4) = W,y Mog(a)e)T yE [47]
1 + nw? g(w,) [Tl + —%2—]
ll(A) = @y MO[w%g(we) ATsm/D2 + ngl(we)] . [48]

1 + nw? g(w,) [T, + T,, A%/ D?]

The net slow passage absorption and dispersion responses of the inhomogeneously
broadened system may now be examined in detail.

Slow Passage Absorption

As previously stated, the net inhomogeneously broadened response is a convolution
of the packet responses with a normalized distribution function G(4). Thus the slow
passage absorption may be written

V(4) = j G(4') (4 — A')dA’ [49]
where v(4) is given by Eq. (47). It is noted (3) that most sources of inhomogeneous
broadening elicit a Gaussian distribution function, and it is this form of distribution
function that will be considered explicitly. Equation (49) may then be written as

© ( a4’ )2
0, M, T, e~ \Vidog
)7 Ao W} To(T, + To(4 — AP/ D? . N,
[50]

V(4) =

Changing variables according to y = 4/4w};, where dw} = V24w, assuming the
identity Ty = 1/D and rearranging terms we have that

o, M,T, f edy
'/ 1+ @iT3 + (0 —y)* 408 T3+ 3 Ti Ts + (v — y)* dog* T Ts

{51

V(v)=

~—0

where v = A4/ dwg.
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We now introduce the inhomogeneity parameter a = 1/T, Awg which relates the
packet width to the width of the inhomogeneous distribution of local fields. The ab-
sorption may then be written

w0y My T, 'ad dy
nl/Z(l +(1)§T3 ss) 1+w1T:jsTl (v_y)z
T+l T T, &

V(o) = (52]

where terms of the form w?7T% have been neglected with respect to terms w37, 7, as
T, > T5. We let
1+ 2T T
2 _ 14143
§ 1 +w%T3ng [53]

and obtain

@ Mo [ e_”l dy ‘

V(v) = | , .

e (e i ears e A et

The function in curly brackets ir Eq. [54] is known as a Voigt profile (20), and has

been well documented (21). The saturation dependence and the line shape predicted

by Eq. [54] are some of the principal results of the theory, as is discussed in the next
Section.

Slow Passage Dispersion

The complete saturation behavior of the slow passage dispersion response may be
calculated in an analogous manner to the absorption. In this section the expected line-
shapes in the limits of low microwave saturation and very high saturation are briefly
indicated. For low saturation Eq. [48] may be written as

w(4) = 0, Mo AT + A2T2). [55]

The net inhomogeneously broadened response is therefore

U(d)=

w, M, f ¥ e (0 y)dy i56]

2m)'? dwg a+ (v —y)?
where the Gaussian distribution function of the previous section has been assumed.
At very high saturation it is easily shown that

U(A) W, MO f e—y (0~y}dy {57]

= 2m)'2 Awg a*+@w-y)y
where a' = (T,/T.)"?a. Thus the dispersion does not saturate, and the dispersion
described by Eq. [57] corresponds to Redfields (22) strong saturation limit in inhomo-
geneously broadened systems.

COMPARISON WITH EXPERIMENT
There is already present in the literature a wealth of data on the resonant properties
of inhomogeneously broadened paramagnetic spin systems. No further experiments
have been performed in this work as it is believed that the available data can be used to
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give quantitative verification of the spin temperature theory as applied to such para-
magnetic systems. Furthermore it would appear that a deeper understanding of the
relaxation processes occurring in inhomogeneously broadened systems may be achieved
in terms of the spin temperature theory. These conclusions are amplified for the rapid
passage dispersion responses and the slow passage absorption response obtained in
the previous section.

Rapid Passage
We first discuss the inhomogeneously broadened rapid passage first harmonic
response in the limit @, T, > 1. From Egs. [35] and [39] we have that

UI(A) =
5v2H}Z

., G4 (4~ A')2[1 ) {

MowﬁHm f ’)’2H2
S [(A —4'Y+ o} + D* + — ‘“] (4 — 4Y + w}+ D?]

yzH,z,,]} dA’

d-AV+oi+D*+ 3

sin(w,, t — )

M, D*yH, [ G(4') (4 — A" dA’
@0y T [(4— A4+ w2+ D*(4— 4)* + w? + D> +y* H%[2)?
. T
X sm(wm t+ E)- (58]

It is easy to show that in the case where ®, and yH,, are less than D, and D € dwg
where dwyg is the width of the distribution function that
nw MyyH,, G(4) nw; MyyH,, G(4)
2D 4'wm Tls D

m

U,(4)= 'sin(wm t+ 2) [59]

sin{fwy, t — ) +

The existence of a first harmonic rapid passage response m out of phase with the
modulation with a shape corresponding to G(4) has been well documented (23) for
situations in which w,,7; > 1. These experimental observations correspond very well
with the first term of Eq. [59]. The fact that a signal corresponding to the second term
has not, as yet, been observed could be due to the fact that either T, = T,, thus making
1Ty, =0,0r 0, T, > 1if T,y € T,

The 7 out of phase term of Eq. [58] is considered in greater detail. Figure 1 shows the
computed lineshapes of this first harmonic dispersion signal as H, is increased, assuming
a Gaussian distribution function G(4). It may be noted that a characteristic distortion
of this signal occurs when yH, > Awg. Such effects have been observed experimentally
(24). The expected variation of the signal amplitude as H, is increased is given in Fig. 2.
Similar effects are also predicted by Eq. [58] as H,, is increased. Such “pseudo-satura-
tion” effects have been observed by Hyde (24) in an EPR study of F centers in Li:F.
The important aspect of these H, and H,, dependencies of the signal amplitude is that
they allow a measure of the spin packet width, as it is in the region yH, ~ D, yH,/+/2 ~
D that the saturation effects become noticeable. It should be noted that care must be
taken to ensure that the adiabatic condition w,,H,, < yH? is obeyed as H,, is increased,
however.



410

P. R. CULLIS

a=00!
H,=0-005
Hpn=0-001

‘001

= 000!

1 L $

[V I I B 1
5-4-3 -2- 01 2 3 45

FiG. 1. Theoretical n out of phase first harmonic EPR rapid passage spectra of inhomogeneously
broadened systems for various microwave field amplitudes. All parameters are expressed in terms of
V24w, where Awg is the width of the Gaussian distribution function (see text).

Signal Amplitude {Arbitrary Units)

11ty [ R AW R 1 [N NEE|

16° i0' !
Microwave Amplitude (yH//ZAwg)

FiG. 2. Theoretical pseudo-saturation behaviour of the = out of phase first harmonic EPR rapid

passage responses.
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In the situation where @, T, <€ | the expected first harmonic dispersion signal may
be obtained from Egs. [39] and [36] as

U(4)=w, MyyH,, 0, T,

,yZHZ
2H2 m
. G(A')[y ; '“+<A'—A)2{1 * vzHﬁ,”
2

(A—4Y +wi+D*+

N 4
x - [(A—A’)2+w§+D2+ﬁf_?n]z sm(wm,_i)
+ w, MoyH,, x
- a7 -1 DT, 24— 2y~ L
mG(A) 1+(A—A’)2+w§+D2+7’2_;l§_ T,. 1+(A—A')2+w§+Dz+ yzg-l;
- (A”A')2+w§+D2+7’2_§I_'2"
x sin(wy, 1) -

We do not consider the term in phase with the modulation as it has rather complicated
behavior from which it would be difficult to extract useful information. An added
complication is that when w,, T, € 1 a term arising from the slow passage dispersion
may be expected, whose first harmonic signal is always in phase with the modulation.

The interesting term of Eq. [60] is therefore the response in quadrature with the modu-
lation. In the situation where yH,, and , are less than D and D <€ Awg, it is straight-
forward to show that

Ur(A)awsa = Mo, YH 0 T, G} sin ot - 5| 1]

This response corresponds very well with the in quadrature response that has been
observed (25, 26) in inhomogeneously broadened systemas when @, T, <€ 1. It may be
shown that these spectra are somewhat narrower (for similar values of H,,) than was
the case with the w,, T, > 1 response (Fig. 2), which effect has been observed experi-
mentally (27).

The characteristics of the important inhomogeneously broadened first harmonic
rapid passage dispersion responses and the relevant passage conditions are summarized
in Table 1, for situations in which H,, and H, are small. We may close this section by
noting that the application of the spin-temperature theory to inhomogeneously
broadened paramagnetic spin systems would appear to give excellent agreement with
experiment in the rapid passage regime.

Slow Passage

The slow passage response of inhomogeneous spin-systems in the previous section
can be shown to give quantitative agreement with experiment in various limits. We first



412 P. R. CULLIS

TABLE 1

PassAGE CONDITIONS AND CORRESPONDING FIRST HARMONIC SIGNALS IN INHOMOGENEOUSLY BROADENED
SYSTEMS®

Adiabatic Passage Conditions: wy, H, < yH?
Inhomogeneity conditions: w; and yH,, < 1/T5 € Adwg

Phase
Spectrometer mode Passage conditions First harmonic signal  (relative to modulation)
Dispersion ml1> 1
pe Oy > | aMow, yH G(_A) _
_ 2D i
OnTi > T A,
Dispersion onT; <1 AMo @1 7HnOn T G(4) z
2D 2
Dispersion o,T <1 Dispersion 0
o T, < derivative
met yT3Hyq
Absorption onT; <1 aMow, yHndG(A)/dd 0
onTy < 1/yT3H,
y2H3IT, <1

21t should be noted that if the inhomogeneity condition w,,, yH; < 1/T5 is not obeyed, significant
distortions to the signal do not result until @, or yHy, > dwg.

consider the response under nonsaturating conditions when 1/7, € AW, {or a <€ 1).
From Egs. [47] and [49] we then have that

V(4) =w, MyT5G(4) {62]

It is easy to show, using the method of the Appendix, that the first harmonic response
observed when magnetic field modulation is employed (yH,, < 1/T5) is the derivative
of the absorption. Therefore the integrated first harmonic slow passage absorption
response reveals the distribution function G(4), which is directly comparable to the
first harmonic rapid passage responses previously discussed. This is an important
result, as it provides a basic continuity between the spectra obtained from samples in
which the concentrations of paramagnetic spins is increased, which often necessitates
experimental observation under first rapid conditions and then slow passage conditions
as the T, of the sample decreases (17). This prediction that the integrated first harmonic
slow passage response and the first harmonic rapid passage response have the same form
in inhomogeneously broadened systems affords excellent agreement with experiment
(11).

The general form of the absorptive response or “absorption envelope’ is given by
Eq. [54] when the distribution of local fields is Gaussian. Perhaps the most interesting
characteristics of this response concern the saturation behavior. It may be noted from
Eq. [53] that if T = T, then s = 1 and the response may be written as

@

w, M, a f e dy
Q21 + 02T, Ts) a + (v —y)?

-0

V(v) =

[631
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The resonance therefore saturates in the usual manner discussed by Bloembergen
et al. (27). It may be noted that this is the behavior that might be expected in the limit of
very rapid spectral diffusion (@ > 1) for which it may be shown that Eq. [63] reduces to

_ Muwl T3
V)= 1+ 2T, T, (1 +AZT§) [64]

which is the BPP (27) result, where T’; corresponds to the T, of the system. If the assump-
tion is made that T, € T, however, the absorption envelope becomes

V(v) =_% [as ( —e_ﬂdL_] : [65]

Q)2 Awg s a?s?+ (v —y)?

o
=0

At the center of the inhomogeneously broadened resonance (i.e. v = 0) it is easily shown
that
~ 2¢2
V()= V201 Moe™ 1} _ o tas)] [66]
Wg S
where s = (1 + 02T, T3)"/2

This is the Castner (5) saturation curve result for inhomogeneously broadened sys-
tems. Castner has assembled abundant evidence to show that inhomogeneously
broadened systems saturate in this manner. In the spin-temperature context, there-
fore, it may be concluded that if T, < T, in such systems, the spin temperature approach
gives quantitative agreement with experiment.

The condition T, € T, deserves further discussion. The spin-lattice relaxation mech-
anisms of paramagnetic spins in a dilute random lattice are a subject of some interest.
Experimental evidence indicates that a spectral diffusion—cross relaxation (29) mech-
anism is often dominant (11, 17, 30), whereby “isolated” spins experience spectral
diffusion through the lattice until they encounter a fast relaxing center (FRC) with
which they can cross-relax. The FRC is conjectured (20) to be a group of highly coupled
spins that are in more direct contact with the lattice. The suggestion that T,, < T,
in such systems, therefore, is very reasonable as the spin-spin reservoir may be expected
to be in much closer contact with the fast relaxing species than the more isolated Zeeman
reservoir, due to the (secular) dipolar and exchange interactions.

The spin temperature approach indicates that the most general form of the satura-
tion behavior of inhomogeneously broadened systems is given by

V2w, My ™[] — erf(as)]
dog[(1 + 0}T, T5)(1 + 03T, T,))*?

where s = [(1 + 02T, T3)/(1 + @?T T5))"/2. It is therefore important to realize that
the observed saturation behavior may, in general, be expected to be an intermediary
response between the “normal” saturation behavior of BPP and the T, < T, result.
This observation indicates that some caution should be used in obtaining the spin
packet width by the method employed by Castner (5). A more direct approach for ob-
taining this parameter, assuming magnetic field modulation is employed, is to increase
the modulation amplitude (when w, < 1/T5), and observe a pseudo-saturation of the
first harmonic signal as H,,, is increased through yH,, ~ 1/T;. This method is completely
analogous to the method of obtaining the spin-packet width in the rapid passage regime.

V)= [67]
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A comparison of the value of a that may thus be determined with that obtained via the
Castner () technique will then give an estimate of the relative values of 7, and T,
and detailed examination of the shape of the saturation curve should allow a deter-
mination of their absolute values.

Another primary result expressed by Eq. [54] is that the resonance spectra obtained
under slow passage always have a Voigt lineshape, assuming that the distribution of
local fields is Gaussian. This type of lineshape is observed experimentally (//), which is
another verification of the theory.

Finally, the validity of the spin temperature approach in situations where spectral
diffusion is very rapid (a> 1) can be demonstrated from the results of Clough and
Scott (15). Briefly, in such situations the absorption may be written as

W, My T3
1+ T2+ 0T, T + (03 /a®) (1 + 02 T3 T,)
In situations when the system is highly saturated, therefore,
V(O)/V(4)= A2TiTJT, [69]

which dependence was experimentally observed (/5).

In summary, therefore, these results conclusively demonstrate the validity of the
spin temperature and spin packet assumptions as applied to inhomogeneously broad-
ened electron spin systems in both rapid and slow passage situations. Furthermore,

it is envisaged that a substantial clarification of the spin-relaxation mechanisms of the
paramagnetic spin species may be achieved within the terms of this model.

V(d)= [68]

APPENDIX

The first harmonic variation of the spin temperature § is required. The differentiai
equation governing its time dependent evolution (Eq. [34]) may be written

BB B_ _ Boodl) __ P@i+D) _ Baw)dw)

dt T, T, (AP +w?+ D> T4t +w?+ D¥ A1)+ w?+ D?
where A(t)= A+ yHpsinwy,t, T\s=T,T,/(T, — T, w,=yH;, T, is the Zeeman
spin-lattice relaxation time and T, is the relaxation time of the spin-spin reservoir.
The terms in A(t) are expanded in a Fourier series according to

[70]

4(t) -5 piogt ol
TP alT D 5% [
1 — iwnt 1y
O 72}
AOAD 5, ptiom, (73]

AP+ + D2 ¢
The primary problem is to evaluate the coefficients b, in Eq. [72], after which it is a
relatively simple exercise to obtain the @, and ¢, coefficients of expressions [71] and [73].
Equation [72] may be rewritten as
1 _ 1
AP +wi+ D* 4%+ @i+ D*+ (Y2 HE[2) + iyH,, A(e” — e%)—y* HE[A(e* - ¢72'7)
[74]
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where 0 = w,, 2. Welet a = A, = D and y = yH /2 and obtain
1 1 x\ !
_— _——(1-Z 7
A+ w4+ D* o (1 a) 731

where 6 = a® + B2 4 y? and x = 2ia(e'® — e7'%) + y2(e?? + e72'9),
The expression on the right-hand side of Eq. [75] is expanded in a Taylor series

according to
1 x\"1 L (x\"
-3 =22 0) [76]

h=0
Noting that x* = (y + z)" where y = 2ia(e'® — ¢7') and z = y*(e?!® + ¢~2!9), the Binomial
theorem may be employed to give

n
X'=Qp+2)= Z (m) ymznm, [771
m=0
Similarly
" = Qiay)" (et — )" = (2ia)" > (’”) (- etn-pe 78]
p=0 p
and
g .),Z(n—m) (ezio + e-zio) n-m — .},Z(n—m) E (n - m) e(4q—2n—2m)19_ [79]
q=0 9
Upon introducing [79] and [78] into [77], and subsequently into [76], we have that
1 x\1 n m n—m
- (1 — _) = Z Z z z C’lqu e(4q+2v+m—2n)w [80]
g g n=0 m=0 p=0 q=0
where

n! (—=1y""P 2iay)m y2=m
plgtm—p)l(n—m—g)te™

We consider terms in the expansion [80] to n = 1, or to order 1/¢2. It is then fairly
straightforward to show that

bo=1/o; by =b_, = 2iayjo; b, =b_; =y*/c* (81]

and that all higher frequency coefficients are equal to zero to second order in 1/o-
Using the results expressed by Eq. [81] it may be shown for Eq. [73] that

mnpq —

C0=0
YWD 2
€1 =C,4= )’6 [1—%]
-y w, 202 82
C2=—C2=YT[1—7] [ ]
3y o,
C3=C3= ‘yz

[
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whereas, in Eq. [71]

o
iy { | R )
a,=-d_, =—‘;(l +;_(2°‘ -7 ))
2 (83]
ay
a;=a_,= o7
i3
a3 =—a_3= —;2— .
We now return to Eq. [70] which may be rewritten as
d . .
7’3 + £ ~B > (c; + Ab) €'~ + B 3 a, erion’ 184]
1 ] 7

where A = (D? + w?})/T,, and B = B w,/T;. Using the integrating factor /™1 we have
that

dﬂer/n
dt

We solve Eq. [85] to first order by the method of successive iterations, obtaining

=—B@)e''Ts > (c; + Ab)) €'°nt + B 5 a,e®PiomT1TDE [85]
1

P

B0) = T O) = T [ BO) S (er+ Abeont dr
o 1

T
+Be™tTt f D a, eWiomT T gy’
o 7

t 12

+ Be™t/T f dt’ J- > a,e@iomtt/TOY “S (c, + Ab)) e'iomt’ dt”
0 o’

t t’
+BO) T [dr' [ S (e, + Ab)eton 3 (c,+ Ab) et dr".  [86]
(.)/ o 1 n
The first harmonic response in the limits w7, > 1 and o, 7T, €1 of each of the
expressions on the right-hand side of Eq. [86) are now considered in order from term 1
to term S.

Obviously there is no first harmonic response from term 1. Term 2 may be written,
on performing the integration, as

@ = —e~*T1 B(0) z(cx + Ab) (e — 1) (87]

liw,,
and the first harmonic response is therefore

i e~t'T1 B(0) 2¢, sin{wy, 1) _ e 11 B(0) A2b, cos(wy, 1) )
(/259 imm

@1 = [88]

As the resonance condition is observed for a time ¢ < 1/w,, this response is only large
when 0, T, » 1.
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Term 3, when integrated, becomes

@ —_ ‘B]"1 z o, COS(¢p) [ei(Pwm!—d’p) _ e—(!/T1+i¢p)] [89]
14
where ¢, = tan'(pw,T;). The first harmonic response is therefore
(3, = BT, a cos ¢, 2isin(wy, t — ¢,). [90]

When w_, T, > 1, cos¢, approaches zero. Thus the response expressed by [90] is
large only for w,, T, < 1.
The integration of term 4 yields

@ =—BT3 3 3 a,(ci-+ Ab)cOS($,) cOS{h5) 05+ o1sr [0 +Pmt — 71T1]
p I

liomt 1
+ e~t/T1 BT1 z Z ap((,‘l + Ab,) COS¢p ei‘bp[eliT] [91]
p 1 "

and the first harmonic response is therefore

@, =—BTicos¢, {z S a)c; + Ab)cos P, e @t gl Omt

+p=1

+ o2 a.,(c,+Ab,)cos¢,,em>,—¢1>e_mm,}
I4+p=—1

BT
+e7tT1 za)_l {Z a,(ci + Ab;)cos g, e !%» glomt
4

m

— > a)c_y + Ab_j)cos¢,e % e‘“"""} . [92]
p

When 0, T; > 1, cos¢, = 1/pw,,, T, and the only terms in expression [92] that are
large are those for which p = 0. Under these conditions ¢, = n/2 and it is then straight-
forward to show that the two terms of expression [92] cancel. On the other hand, when
o, T; €1, the second term of [92] disappears and we obtain from the first term that

@, =—BT?(agc, +a,¢; — ay ¢, — A, €3) 208 Wy t — ABT*(ag b,y + a, bo) 2i sin wpt
93]

where we have kept terms to order 1/02.
It can be shown, by exactly similar methods to those previously used, that the first
harmonic response from term S is zero for w,, T; <€ 1, whereas when w,, T; > 1

G = —%[2/16‘1 by cos @, t — 6icy c, SIn Wy, ). [94]

Upon collecting terms, noting that f(0) = f; we/o, where 6, = 42 + ®,> + D? and

employing the relations [81], [82], and [83] together with those used in Eq. [74], we
obtain that when @, T, > 1

BLwo A*yH,, l_5v2H?n
0,0 8 62

B.(t) =

m
—sin

) ﬂL Wo D2 A2 ')’H
]sm(cum t—m+ 0. T. 0.0

() t+E
'm 3 ’
[95]
15
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whereas when 0, T €1

_BLwmeTi yHm .),ZH'Zn 2 AZ H n
Bi(1) = 2 7] +4 5 sin t—2)

DT yH, 2 2HZ .
B—————Lwo LY, 1+- (Az P m Hm) sin(wy, t — m)
Ty, c 4

. Hm 1 2H2
A T A
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