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The EPR responses of inhomogeneously broadened electron spin systems are 
considered in detail under the assumption that a spin temperature situation in the 
rotating reference frame obtains in the constituent spin packets. Expressions are 
derived for the rapid passage and slow passage responses of such systems, including 
situations where magnetic field modulation and subsequent phase sensitive first 
harmonic detection is employed. It is shown that for rapid passage situations in 
which w, T1 9 1 (where o,,, is the angular frequency of the magnetic field modulation) 
a dispersive response x out of phase with the modulation is obtained, whereas when 
w,T1 Q 1 a response is obtained in quadrature with the modulation, both of which 
are in close agreement with experiment. Further, in very inhomogeneously broad- 
ened systems the first harmonic dispersive response has an absorption type shape 
given by G(d), where G(d) describes the inhomogeneous distribution of local fields, 
which is of the same form as the absorption response obtained under slow passage. 
In the slow passage regime it is shown that the saturation behavior of the system 
is strongly dependent on the relative values of the Zeeman spin-lattice relaxation 
time T1 and the spin-spin reservoir relaxation time T,.. For situations in which T1 = 
T,, the saturation behavior of Bloembergen et al. is predicted, whereas when T,, Q Tl 
the saturation behavior observed by Castner is obtained. Finally, techniques that 
allow measures of the spin packet width, Ts, and Tl are discussed. 

INTRODUCTION 
Electron spin systems whose constituent spins have a distribution of resonant 

frequencies are commonly encountered in electron paramagnetic resonance (EPR) 
studies (Z-3). Such “inhomogeneously broadened” systems arise when the paramagnetic 
spins are relatively dilute and localized to particular regions of the sample. The spins 
may therefore experience local magnetic fields due to contact interactions with nearby 
nuclei, inhomogeneities in the applied magnetic field, or anisotropy of the g-tensor. 

The slow passage response of very inhomogeneously broadened systems is well 
described by the “spin-packet” approach suggested by Portis (4) and subsequently 
extended by Castner (5). In these formulations each spin packet is characterized as a 
(homogeneously broadened) spin or group of spins with the same resonant frequency. 
The net inhomogeneously broadened response is then obtained as a convolution of the 
individual packet responses with a function describing the inhomogeneous distribution 
of the packet resonant frequencies due to the local fields. Castner (5) assumes the spin 
packet width (written here as l/T,) to be a variable parameter, and the fact that l/T, 
is observed to increase as the paramagnetic spin concentration is raised suggests 
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that the spin packet width reflects the strength of the spin-spin interactions present 
in the sample. Under these assumptions a functional form of the saturation behavior 
in inhomogeneous systems may be obtained for various values of an inhumogeneity 
parameter a = I/T, Aw, (where Aw, is the width of the inhomogeneous distribution 
function), which gives good agreement with experiment. 

In the rapid passage regime the situation is somewhat more confused. Portis (6) 
has given a description of rapid passage in very inhomogeneously broadened systems 
(a = 0) arriving at results that agree, at least qualitatively, with experiment. This theory 
however, provides no parameter corresponding to the spin packet width that reflects 
the strength of spin-spin interactions. The situation is further complicated by the usual 
experimental device of increasing sensitivity by using magnetic field modulation and 
subsequent first harmonic detection. As described by Portis (6), the contributions of 
the individual spins to the first harmonic signal become a rather complicated expansion 
of the individual spin susceptibilities, which do not converge for many experimental 
situations. A detailed analysis of the many special rapid passage conditions and corre- 
sponding EPR responses that may be obtained has been presented by Weger (7). 

In the present work the slow and rapid passage responses of inhomogeneously 
broadened systems are analysed in a manner analogous to that of Castner (5), except 
that a spin temperature situation in the rotating reference frame (8) is assumed for the 
spin packets. The response of the individual spin packets is obtained using the spin 
temperature formalism to include situations where sinusoidal magnetic field modulation 
and subsequent first harmonic detection is employed. The net response of the entire 
inhomogeneous system is then given by the convolution of a function describing the 
distribution of local fields with these individual packet responses. 

The suggestion that a rotating frame spin temperature situation exists in inhomo- 
geneously broadened electron spin systems has been well discussed by Atsarkin and 
Rodak (9), and offers good agreement with experiment. These authors, however. 
were primarily concerned with the response of the system to irradiation at a particular 
frequency, rather than the more usual situation where the resonance is swept by varia- 
tion of the magnetic field, which is the case explicitly considered here. 

In the following section the spin packet concept is discussed, and the operational 
definition employed in this work is explained. Subsequently, in the section Spin 
Temperature Theory the relevant spin temperature formulation is outlined, and a 
theoretical form of the rapid and slow passage responses of inhomogeneously broadened 
electron spin systems is obtained. Finally, in the section Comparison with Experiment, 
the excellent agreement between theory and experiment is demonstrated. 

THE SPIN PACKET 

The spin packet concept proposed by Portis (4) applies rigorously to a system of 
noninteracting spins. In the case of EPR each spin packet then consists of a single 
electron spin, the response of which is lifetime broadened by the spin-lattice relaxation 
rate l/T,. The inhomogeneously broadened nature of the resonance is produced by 
local magnetic fields (usually contact interactions with nearby nuclear spins) which 
provide a distribution of possible resonant frequencies. Thus the homogeneously 
broadened response of each spin (or spin packet) has the “spin packet width” 1 /T, and 
a characteristic resonant frequency. 
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The Castner (5) extension of the Portis theory assumes that more than one spin may 
be in a given spin packet, and the spin packet width is then a variable parameter. This 
proposal provides good agreement with experiment but has produced some confusion 
about the nature of the spin packet entity, as it implies that while intrapacket spin-spin 
interactions are strong enough to result in a homogeneously broadened resonance 
the interpacket spin-spin interactions are negligible. The criteria for a spin to be a 
member of a spin packet are therefore somewhat arbitrary, and interpacket spectral 
spin diffusion processes are not explicitly considered. 

In this work an alternative model of the spin packet is proposed which applies 
particularly to electron spins which are a minority species randomly distributed in a 
host lattice and where the dominant electron spin-spin interactions are exchange 
processes. There is good evidence (II) to suggest that as the concentration of such 
“impurity” spins is increased, local clusters of two or more strongly interacting spins 
are formed until, at high enough concentrations, the cluster may be thought to include 
all the spins in the sample. As has been well discussed by Anderson (12), if the exchange 
rates between spins in a particular cluster are much faster than the resonant frequency 
differences between them (produced by the local environments of each spin), a single 
homogeneously broadened “exchange narrowed” resonance is observed at a frequency 
corresponding to the mean resonant frequency of the constituent spins. On the other 
hand, if the exchange rate is slower than the resonant frequency separations, the res- 
onances become “exchange broadened” and maintain their spectral separation. We 
may therefore picture a spin packet as a cluster of highly coupled spins (which therefore 
have a single exchange narrowed resonant frequency) where the dominant contribution 
to the spin packet linewidth arises from the relatively weak interactions that the spins 
“inside” the packet experience with other spins that have resonant frequencies which are 
distinct from the packet resonant frequency. This model includes such processes as 
spectral diffusion in a natural manner. It should be noted, however, that this statistical 
description will be less correct at low impurity concentrations were the spin packet may 
be more correctly analyzed as, for example, a two or three spin system (13). 

The spin Hamiltonian of an inhomogeneously broadened spin system may be written 
as 

where wI is the resonant frequency of the ith spin and SIIss represents the spin-spin 
interactions (exchange and dipolar) between the ith and jth spins. This Hamiltonian 
may be separated into parts corresponding to each of the highly coupled clusters or 
spin packets according to 

where nk is the number of spins in the kth spin packet, and 

The fast intracluster exchange processes that have been used to define the spin packet will 
result in the distribution of oi over the cluster making a negligible contribution to the 



400 P. R. CULLIS 

packet linewidth. The resonant frequency of this exchange narrowed packet resonance 
is therefore 

1 “k 
q=- q 

nk c 
1=1 

and the packet Hamiltonian is, to a very good approximation, given by 

131 

SPIN TEMPERATURE THEORY 
In this section the slow and rapid passage resonant responses of an inhomogeneously 

broadened electron spin system are derived under the assumption that a rotating frame 
spin temperature situation exists in each of the constituent spin packets. The net 
response of the system is then characterized as the convolution of the packet response 
with a function describing the distribution of resonant frequencies that the packets 
may exhibit. We initially, therefore, obtain the homogeneously broadened packet 
response using the spin temperature formulation. 

In the presence of the irradiating microwave field, the packet Hamiltonian obtained 
in the previous section may be written 

[41 

where HI is the amplitude of the applied microwave field and where the subscripts k 
have been suppressed. It is also understood that the summations are over the n, spins 
in the packet. Moving into the frame rotating at w via the transformation U, = eiwr 2 S,, 

we obtain 
JP = A 2 Sj, + yH1 2 Sj, + 2:s PI j j 

where the superscript * indicates the rotating frame, A = wk - o and where only the 
secular part Xi, of the spin-spin Hamiltonian has been included, which is a good 
first-order approximation. Subsequently, following Clough (24) and Clough and Scott 
(15), we move into the tilted rotating frame such that the z axis is aligned along the 
effective magnetic field via the transformation U, = eiQ 2 Sj,, where 4 = tan-‘(yH, /A). 

We obtain 

where w, = (A2 + y2 H$“2. The approximation now made is that 4 is small, thus 
allowing the identification U, M 1 - z+ x Sj,. This approximation indicates that our 

j 
equations will not be strictly correct for those spins very near resonance. However, 
as the condition 4 < 1 will be obeyed by the vast majority of spins in an inhomogene- 
ously broadened system (especially by those spins “outside” the spin packet we are 
considering) we may consider that most of the observed response arises from such 
spins and that the approximation is therefore valid. We obtain 

[71 
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to first order in 4. We identify U,.# UI-’ =X,, + V where so = o, 2 S,, + &$, and 

the perturbation V = $2 [G&S,,] It is important to note the rok played by V. 
.i 

As both the Zeeman and spin-spin terms in X0 commute with each other, but do not 
commute with V, the perturbation couples the Zeeman and spin-spin reservoirs which 
would otherwise be independent. This perturbation therefore allows the transfer of 
Zeeman energy to the spin-spin reservoir, which is necessary for spectral diffusion 
(and subsequent broadening of the spin packet) to occur. As V = 0 when H1 = 0, we 
may expect to observe larger spin-packet widths when the microwave irradiation is on 
than when it is off. Such effects have recently been observed by Taylor et al. (16) in a 
study of the spin-echo response of an inhomogeneously broadened phosphorus-doped 
silicon sample to a two pulse microwave stimulation. This result serves to give added 
confidence in both the spin-temperature approach and the spin-packet model of the 
previous Section. It may also be noted that this larger spin-packet width in the presence 
of HI corresponds to the “instantaneous diffusion” effect of Klauder and Anderson 
wh 

Returning to Eq. [7] we move into the interaction representation via the transforma- 
tion U, = iXot, where it is easily shown that 

dp*/dt = (i/h) [p*, V(T)] 

where p* is the density matrix of the system in the interaction representation and V*(t) = 
Us(t) VU;‘(t). Solving this equation by the normal method of successive iterations, 
we obtain t t 

[p*(O), V*(t’)] dt’ + [[p*(O), V*(f)], V*(t’)]dt”dt’ [9] 
0 0 

to second order in 4, or, equivalently, V. Upon moving back into the simply rotating 
frame via the inverse transformation p”(t) = U;’ U;‘(t)p*(t) U,(t) U2 (where p”(t) is the 
density matrix in the rotating frame) it is straightforward to show that 

f 

p”(t) = p”(o) + i4 2 [P(O), S,,l + f MO)9 Ut’ - t>ldt’ i s 
0 

f t’ 

[[p”(O), V(t” - t)], V(t’ - t)dt”dt’ 1101 
0 0 

to second order in 4. Thus we obtain 

‘9 = ; [p(O), V(O)] + (;)’ 1 [[p”(O), V (- $1, V(O)]dz 
0 

[Ill 

where the limits of the integral have been extended, as the commutator in the integral 
is very small except at very short times. At t = 0 (i.e. before the microwave irradiation 
is switched on) we obtain from Eq. [5] that 
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where Z = -A 2 S,,; C is a normalizing constant such that Trp(0) = 1 and x and /I 

are the initial “inverse” Zeeman and spin-spin temperatures, respectively. We now 
proceed to calculate the equation of motion of the z component of the magnetizatton 
in the rotating frame, assuming it is isolated from the lattice, via the relation 

The calculation of the trace in the above expression has been performed by Goldman 
(8). He obtains, for the particular form of the perturbation V we employ, that 

where wI2 = y2 HI2 and where 

gc4 = Tr(Sj, SjX( t)) cos(w, z) dr. U51 
XT 

We note that g(o,) is the shape of the absorption signal from the packet at low micro- 
wave level. 

We examine the form of the correlation function 

‘37) = T 2: Sj.x sjx(z) j 
in Eq. [ 151. In this work we assume that 

G( 7) = ,yl=3 I.171 

where T3 is the effective “T2” of the spin packet and corresponds to the time necessary 
for a spin temperature situation to obtain in the spin packet after the microwave irradia- 
tion is applied. The assumption expressed by Eq. [ 171 is similar to that made by Clough 
and Scott (15). In Clough and Scott’s work, however, l/T, refers to the rate at which 
equilibrium is established between all the spins experiencing different local fields, 
whereas in this work l/T, refers only to the rate at which equilibrium is established for 
spins in the same packet which therefore experience effectively the same magnetic held. 
It is also important to note that the exponential form of G(r) corresponds to a Lorentzian 
profile in the frequency domain. As it is suggested in this work that the spin packet 
approach is valid when spectral diffusion occurs, Eq. [17] implies that the “diffusion 
envelope” obtained by exciting an inhomogeneously broadened system at a particular 
frequency o, and monitoring the amount of excitation that spins at different resonant 
frequencies experience, should be a Lorentzian profile about w. The analysis by Wauder 
and Anderson (17) of the data due to Mims et aZ. (18) shows that the diffusion envelope 
is indeed Lorentzian and, furthermore, that such Lorentzian diffusion may be expected 
in all inhomogeneously broadened paramagnetic spin systems. These results give some 
justification for the assumed exponential form of G(r). 

Upon substituting the relation [17] into Eq. [15] we have that 

g(o,) = T&( 1 + ( A2 + co:) T :). I181 
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Similarly, the sine Fourier transform of G(r) may be written 

g’(0,) = AT$/rc(l -t (A2 + 0:) T$. u91 

Upon substituting relation [14] back into Eq. [13], we obtain the equation of motion 
of the z component of the magnetization as 

dM,/dt = no: g(q) [Mz - /?A$] WI 
excluding the effects of spin-lattice relaxation. 

Similarly, it can be shown that the inverse spin-spin temperature /I obeys the relation 

dB 
z= 

““y;;’ A [M, - /IAyR] 

D2 = Tr&,2/Tr 1 S$.where D gives a measure of the width of the frequency dis- 

tribution of the iacket, and we may therefore write T3 = l/D, by making reference to 
Eq. [18] when o1 is small. Equations [20] and 1211 are the Provotorov (19) equations 
in the absence of spin-lattice relaxation. 

The dispersive and absorptive responses of the packet may be calculated from the 
density matrix in the rotating frame given by Eq. [I 11, according to the relations 

WI 

where u(A) and u(A) are the absorptive and dispersive responses respectively. As shown 
by Goldman (a), upon calculation of the traces one obtains 

and 
44 = 01 rW + ~wg’(d [Mz - /WM. P51 

The derivation of the resonant responses of the spin packet therefore necessitates 
calculation of B and M, - /3~h from Eqs. [20] and [21] when the effects of spin relaxa- 
tion are included. The resulting expressions may then be introduced into Eqs. [24] and 
[25], thus obtaining the observed absorption and dispersion. 

Expressions are now derived for the absorption and dispersion of the spin-packet 
under conditions of rapid passage (the packet response is traversed in a time much 
shorter than the spin-lattice relaxation times of the system) and under the opposite 
condition of slow passage. The usual experimental situation in which sinusoidal 
magnetic field modulation and subsequent phase sensitive first harmonic detection is 
employed is considered specifically. It is interesting to note that the experimental situa- 
ation is substantially simpler for the electron spins under discussion than for the lower 
frequency nuclear spins. This is primarily due to the fact that complicating effects (8) 
due to “rotary saturation” (power is absorbed from the modulating field) and non- 
adiabatic responses which may occur when the modulation frequency o, k yH, occur 
only at rather high modulation frequencies for reasonable HI’s, due to the larger elec- 
tronic gyromagnetic ratio y. Such experimental situations can usually be easily avoided. 
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Rapid Passage 

The rapid passage spin-packet response is obtained under the condition that the time 
At taken to sweep through the packet obeys the inequality T3 < At 4 T,, T,,. Thts, after 
a time T3 the system has established a spin temperature and, as the Zeeman and spin- 
spin terms are coupled by the irradiation applied, this temperature is the same for both 
reservoirs. The density matrix of the system in the rotating frame is therefore 

p” = ce-8G+x+.zr’,t 

where X = o1 2 Sj,. The effects of spin relaxation may be included as 
j 

1261 

where T,, T,,, and T,, are the spin lattice relaxation times of the Zeeman, microwave, 
and spin-spin reservoirs respectively. Summing the system of equations [27], it is 
straightforward to show that 

@ B[;+$+g] 
ss + PLWOA 

z=- -. 
A2+w:+ D2 Tl (A’ + w: + D2) [281 

In this work it is assumed that T,, = T,, as the microwave irradiation and the spin- 
spin terms are in good contact. Equation [28] may then be rewritten as 

4 P B <w: + D2) A. wo A -= -- - 
dt Tl Tls(A2 + of + D2) + Tl(A2 + w; + D2) ]291 

where T;,’ = (Tl - T,,)/T, T,,. Equation [29] describes the effects of spin relaxation 
in the rotating frame when the rapid passage conditions are observed. 

From Eq. ]21] it is noted that in order to completely characterize the time &pendence 
of fi it is necessary to know the time dependent evolution of x = M, - /3Aytl. We follow 
Goldman (8) and note that, employing Eqs. [20] and [21]’ 

dx/dt = - nw;‘g(w,) x - (w:/D2) nw; g(w,‘b x - h/3$ 

= -(X/T) - d/l 
WI 

where 

l/z = nw:g(w,) [l + (A2 + w:)/D’!]. 

Using the relation [ 181, and identifying l/T, = D we have that 

l/7 = w: T3 t311 

1 It should be recognized that the variable A in Eqs. [20] and [21] is really W, = (A2 + c@%A(l f 
(@/2)) which is equal to A to lirst order in 4. However, when factors of O(Az) are consideredthe explicit 
form w, should be used in order to include the w: dependence. 
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We make the “adiabatic” passage condition that A and jI do not vary appreciably 
during the time r. Formal integration of Eq. [30] then results in the relation 

x = -~&h/w; T3. 1321 

It is important to realize that the adiabatic passage condition gives a strict upper 
limit to the modulation frequency 0,. Given that the frequency width of the packet 
response is l/T, the condition states that this width must be swept in a time much longer 
than r. In the case where magnetic field modulation is employed, we write A(t) = A + 
y&sino, t. Thus the maximum rate dA/dt at which the field is swept is ~iY~,o,,,, and we 
may write the adiabatic rapid passage condition as 

H,,,o, < yH:. I331 

Upon substituting the relation [32] into Eq. [21] and including the effects of spin- 
lattice relaxation as given by Eq. [29], we obtain an equation describing the time de- 
pendent evolution of /I as 

4 BAWW PM + D”> /Loo A(t) 
dt=- A(t)2 + co: + Dz - T,,(A(t)’ + w: + D2) + Tl(A(t)2 + w: + 0”)’ [341 

The A(t) are written explicitly as functions of time in order to emphasize that they 
are sinusoidally varying with time. Equation [34] is solved to a second-order approxi- 
mation in the Appendix for the two extremes o, Tl S 1 and o, Tl < 1. In the case when 
o,T, B 1 we obtain the first harmonic response as 

BL~oA~Y& 
A(t) = a1a [l-2gG] sin(st--n)+ w Taa2 

D2PLWoA2YH,sin 
In IS 1 

[351 
where 0 = A2 + of + D2 + y’Hz/2 and g1 = A2 + wf + D2. For w,T, < 1 the first 
harmonic response may be written 

Bl(t) = BL O” m)T1 yHm ‘F + A2 + !.f$.%] sin(o, t - 4) 

+D2B~oT~~H, Tl,02 [l+$A’-y)]sin(m,t-n) [36] 

+ BL 00 YK, 
a 2A’-y)]sin(w,t). 

By employing relations [32], [35], and [36] we are now in a position to calculate the 
absorptive and dispersive packet responses. The dispersion is given by 

I371 

As we obey the adiabatic condition H,,,o, $ yHf we obtain to a very good approxima- 
tion that 

u(A) = co1 j?yh. 1381 
A similar analysis for the absorption reveals that it is smaller than the dispersion by 

the factor E = H,,,o,/yH~ and is therefore effectively zero. Thus we obtain the result 
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that only the dispersive component, which is directly proportional to the spin tempera- 
ture @, is observable. 

The net rapid passage first harmonic response D;(d) from the inhomogeneously 
broadened system is then obtained as a convolution of the packet responses with a 
normalized function G(d) describing the distribution of local fields. We obtain 

U,(A) = co1 yh 1 G(A’)&(A - A’)dA’. r391 
-CC 

A full discussion of the response U,(d) in the limits w, T, 9 1 and o, TI < 1 is presented 
in the next Section. 

Slow Passage 
The basic slow passage criterion employed here is that the time At taken to sweep 

through the packet response obeys the inequality At 9 T3, T,, T,. As TI is the longest 
of these characteristic times, this slow passage condition implies the inequality 

on, Tl< lirT, H,. WI 

The situation becomes somewhat simpler if it can be assumed that the “mixing time” 
W-‘, where 

w = 7Tw~ g(0,) r411 
that is characteristic of Eqs. [20] and [21], is much less than the time taken to sweep 
through resonance. This may be written as the inequality 

CD, H, 4 yH;/l + T:(A’ + co;,. WJ 
Obviously, this condition will not be obeyed far from resonance. As most of the 

packet response will arise near A N 0, however, it is a good approximation to say that 
W-’ is less than the time taken to sweep through resonance if o,H, << rHf, which is 
of course, the adiabatic condition, It is important to note that this condition is far more 
easily obeyed for electron spins than for nuclear spins, and thus that many of the com- 
plications due to nonadiabaticity discussed by Goldman (8) may be avoided. 

If both the slow passage and adiabatic passage conditions are obeyed, the Zeeman 
and spin-spin reservoirs will be in equilibrium with the sinusoidally varying magnetic 
field. The equations of motion of the z component of the magnetization and the spin- 
spin temperature jI including the effects of relaxation may then be written from Eqs. 
[20] and [21] as 

dM,/dt = - no: g(w,) [Mz - BAyhI + (MC, - k&)/T, 

where M,, = ytip,o, and 

C431 

As A is slowly varying compared to W, l/T,, and l/T,,, we may therefore solve for the 
equilibrium values of /3 and A4, - /IAyh, obtain the dispersion and absorption using 
Eqs. [24] and [25], and subsequently obtain the first harmonic response from a Fourier 
analysis of these expressions. 



INHOMOGENEOUSLY BROADENED SYSTEMS 407 

A solution of Eqs. [43]:and:[44] under the equilibrium conditions dM,/dt = dj?/dt = 
0 is easily obtained as 

rw = 
Mzm: gh) AT,, 

D$+ &+O.)~l + G]) 
[451 

M, - /?A@ = 
1 +&g(w;Tl+G]* 

[461 

These expressions may be introduced into Eqs. [24] and [25] to obtain the slow passage 
absorptive and dispersive spin packet responses 

u(A) = no1 & &L?> 
1+7X$g(o,) kr+Y] 

1471 

[481 

The net slow passage absorption and dispersion responses of the inhomogeneously 
broadened system may now be examined in detail. 

Slow Passage Absorption 

As previously stated, the net inhomogeneously broadened response is a convolution 
of the packet responses with a normalized distribution function G(A). Thus the slow 
passage absorption may be written 

‘v(A) = i G(A’)v(A - A’)dA’ 
-gl 

1491 

where u(A) is given by Eq. (47). It is noted (3) that most sources of inhomogeneous 
broadening elicit a Gaussian distribution function, and it is this form of distribution 
function that will be considered explicitly. Equation (49) may then be written as 

m 
JW = t2;$$A2G s 

e-(7$&)’ 
--m 1 + w:T3U’1+ T,s(A - A’)21D2 

1 + T: [(A - A’)2 + w;] 1 L1 + T2ccA 
3 - A,j2 + 02jl ’ 1 

[501 

Changing variables according to y = A/A&., where Au& = 1/2bo,, assuming the 
identity T3 = l/D and rearranging terms we have that 

m 
01 MI T3 

e4 = x1/2 
e-Y2 dy 

1 + 04 T; + (u - y)’ Am;,” T; + of Tl T3 + (u - Y)~ do;,’ T,, T3 

151 
where u = A/ do&. 
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We now introduce the inhomogeneity parameter a == l/T, Aoh which relates the 
packet width to the width of the inhomogeneous distribution of local fields. The ab- 
sorption may then be written V(u) = WI MO Ts s e-~3 dy 

x1/2( 1 + o: T3 T,,) 1 +wfT,sT,+(-~~~ 
1 + w: Tss T3 a2 

f521 

where terms of the form CO: T: have been neglected with respect to terms CO: T, T, as 
TI 9 TX. We let 

x531 
and obtain 

1 
‘(‘) = (2~)“~ Aw,[(l + w;$&, + ofT, T3)]1’2 1” s 

The function in curly brackets ir Eq. [54] is known as a Voigt profile (20), and has 
been well documented (21). The saturation dependence and the line shape predicted 
by Eq. [54] are some of the principal results of the theory, as is discussed in the next 
Section. 

Slow Passage Dispersion 
The complete saturation behavior of the slow passage dispersion response may be 

calculated in an analogous manner to the absorption. In this section the expected line- 
shapes in the limits of low microwave saturation and very high saturation are briefly 
indicated. For low saturation Eq. [48] may be written as 

u(A) = w1 MO dT:/(l + A’T;). WI 

The net inhomogeneously broadened response is therefore 

m ewy2(u - y) dy 
s a2 + (v - v)’ 

where the Gaussian distribution function of the previous section has been assumed. 
At very high saturation it is easily shown that 

03 

s 
e-yz(u - y>l dy 
af2 + (u - 3 

-cc 
1571 

where a’ = (T,/T&)112a. Thus the dispersion does not saturate, and the dispersion 
described by Eq. [57] corresponds to Redfields (22) strong saturation limit in inhomo- 
geneously broadened systems. 

COMPAFUSON WITH EXPERIMENT 
There is already present in the literature a wealth of data on the resonant properties 

of inhomogeneously broadened paramagnetic spin systems. No further experiments 
have been performed in this work as it is believed that the available data can be used to 
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give quantitative verification of the spin temperature theory as applied to such para- 
magnetic systems. Furthermore it would appear that a deeper understanding of the 
relaxation processes occurring in inhomogeneously broadened systems may be achieved 
in terms of the spin temperature theory. These conclusions are amplified for the rapid 
passage dispersion responses and the slow passage absorption response obtained in 
the previous section. 

Rupid Passage 
We first discuss the inhomogeneously broadened rapid passage first harmonic 

response in the limit o,T, 9 1. From Eqs. [35] and [39] we have that 

u,(A) = 

m G(A’)(A - A’)z 

MOW1 YHlll 
s 

sin(w, t - 7r) 
-02 (A- A’)l+w~+D’+~][(A- A’)2+w:+D2] 

+ 
MO D2 yH,,, 

s 

G(A’)(A - A’)2dA’ 

% TlS [(A - A’)2 + of + D2] [(A - A’)2 f of + D2 + y2 H&/2]’ 
-02 

It is easy to show that in the case where o1 and yHm are less than D, and D 4 Awe 
where Aw, is the width of the distribution function that 

u (A) = 7w.1 MorHm G(A) . 
1 20 

sm(w, t - n) + ‘W1 M,YH,G(A)sin 
4w,T,,D 1591 

The existence of a first harmonic rapid passage response rc out of phase with the 
modulation with a shape corresponding to G(A) has been well documented (23) for 
situations in which w, Tl $ 1. These experimental observations correspond very well 
with the first term of Eq. [59]. The fact that a signal corresponding to the second term 
has not, as yet, been observed could be due to the fact that either Tl = T,,, thus making 
l/T,, = 0, or w, T,, 9 1 if T,, < Tl. 

The II out of phase term of Eq. [58] is considered in greater detail. Figure 1 shows the 
computed lineshapes of this first harmonic dispersion signal as HI is increased, assuming 
a Gaussian distribution function G(d). It may be noted that a characteristic distortion 
of this signal occurs when yH, B Awe. Such effects have been observed experimentally 
(24). The expected variation of the signal amplitude as HI is increased is given in Fig. 2. 
Similar effects are also predicted by Eq. [58] as H,,, is increased. Such “pseudo-satura- 
tion” effects have been observed by Hyde (24) in an EPR study of F centers in Li: F. 
The important aspect of these HI and H,,, dependencies of the signal amplitude is that 
they allow a measure of the spin packet width, as it is in the region yH, N D, yH,,,/1/2 N 
D that the saturation effects become noticeable. It should be noted that care must be 
taken to ensure that the adiabatic condition w,H,,, < yHf is obeyed as H, is increased, 
however. 
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a = 0.01 
H,‘0.005 

H,=0001 

FIG. 1. Theoretical IT out of phase lirst harmonic EPR rapid passage spectra of inhamogeneously 
broadened systems for various microwave field amplitudes. All parameters are expressed in terms of 
1/2doc, where dot is the width of the Gaussian distribution function (see text). 

Microwave Amplitude (IIH,/./?Aw,) 

FIG. 2. Theoretical pseudo-saturation behaviour of the H out of phase first harmonic EPR rapid 
passage responses. 
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In the situation where o,T, < 1 the expected first harmonic dispersion signal may 
be obtained from Eqs. [39] and [36] as 

sin t-5 1 

2(A- A’)‘-? DzT 
-1 1+ 

(&A’)‘+w;+D2+ffi T1s 
r 

2(4 - 42 _ y 

(A- A’)2+o:+D2+ F 
)1 

-cc (A - A’)2 + of + D2 + F 

x sin(o, t) WI 

We do not consider the term in phase with the modulation as it has rather complicated 
behavior from which it would be difficult to extract useful information. An added 
complication is that when o,T, < 1 a term arising from the slow passage dispersion 
may be expected, whose first harmonic signal is always in phase with the modulation. 

The interesting term of Eq. [60] is therefore the response in quadrature with the modu- 
lation. In the situation where JJH,,, and o1 are less than D and D < Awe, it is straight- 
forward to show that 

UdA)quad = dkf,, co1 yH,,, CO, Tl G(A) sin . WI 

This response corresponds very well with the in quadrature response that has been 
observed (25, 26) in inhomogeneously broadened systems when o,T, < 1. It may be 
shown that these spectra are somewhat narrower (for similar values of H,) than was 
the case with the o,T, 9 1 response (Fig. 2), which effect has been observed experi- 
mentally (27). 

The characteristics of the important inhomogeneously broadened first harmonic 
rapid passage dispersion responses and the relevant passage conditions are summarized 
in Table 1, for situations in which H,,, and HI are small. We may close this section by 
noting that the application of the spin-temperature theory to inhomogeneously 
broadened paramagnetic spin systems would appear to give excellent agreement with 
experiment in the rapid passage regime. 

Slow Passage 
The slow passage response of inhomogeneous spin-systems in the previous section 

can be shown to give quantitative agreement with experiment in various limits. We first 
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TABLE 1 

PASSAGE CONDITIONS AND CORRESPONDING FIRST HARMONIC SIGNALS IN INH~M~GENEXJSLY BRQADENFB 
sYSTEMSa 

Adiabatic Passage Conditions: o,H, $ yHf 
Inhomogeneity conditions: w1 and yH,,, < l/T, 4 AwG 

-- 

-_ 

Spectrometer mode Passage conditions 

--- --.-_-.-___ _--.- -. ._ 
Phase 

First harmonic signal (relative to modulation) 

Dispersion w,T, % 1 
1 

~Mow, YH, G(A) 
o,T, > - 

YGJL 
20 - 

Dispersion 

Dispersion 

Absorption 

w,T,<l ~MOWI Y&W, T, G(A) I[ 
20 5 

o,T,<l Dispersion !) 
1 

c&T, < - 
derivative 

YTS ft. 
w,Tl e 1 nM,w, yHmdG(A)/dA n 

co,Tl < llvT3Kn 
y2H:T, < 1 

’ It should be noted that if the inhomogeneity condition CO,, yH, < l/T, is not obeyed, signilkant 
distortions to the signal do not result until w, or yHm > Awe. 

consider the response under nonsaturating conditions when I/T, < A W, (or a 4 I )- 
From Eqs. [47] and [49] we then have that 

V(A) = q MO T3 G(A) WT 

It is easy to show, using the method of the Appendix, that the first harmonic response 
observed when magnetic field modulation is employed (j!H,,, < l/T,) is the derivarive 
of the absorption. Therefore the integrated first harmonic slow passage absorption 
response reveals the distribution function G(A), which is directly comparabte to the 
first harmonic rapid passage responses previously discussed. This is an important 
result, as it provides a basic continuity between the spectra obtained from sampks in 
which the concentrations of paramagnetic spins is increased, which often nceessitates 
experimental observation under first rapid conditions and then slow passage conditions 
as the Tl of the sample decreases (II). This prediction that the integrated first harmouic 
slow passage response and the first harmonic rapid passage response have the same form 
in inhomogeneously broadened systems affords excellent agreement with experiment 
(IO 

The general form of the absorptive response or “absorption envelope” is given by 
Eq. [54] when the distribution of local fields is Gaussian. Perhaps the most interesting 
characteristics of this response concern the saturation behavior. It may be noted from 
Eq. [53] that if Tl = T,,, then s = 1 and the response may be written as 

vw = (27p( 1 f 0: Tl Ts) 01A4o FI 6%). f63’1 
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The resonance therefore saturates in the usual manner discussed by Bloembergen 
et al. (27). It may be noted that this is the behavior that might be expected in the limit of 
very rapid spectral diffusion (a $1) for which it may be shown that Eq. [63] reduces to 

l/(A)= Mow1 1 +w:T,T, (1 +%TJ 
which is the BPP (27) result, where T3 corresponds to the T2 of the system. If the assump- 
tion is made that T,, < TI however, the absorption envelope becomes 

b51 

At the center of the inhomogeneously broadened resonance (i.e. D = 0) it is easily shown 
that 

y(o) _ dTwl MO eazsz 
AO,S 

[l - erf(a.s)] WI 

where s = (1 + of TI T3)1/2. 
This is the Castner (5) saturation curve result for inhomogeneously broadened sys- 

tems. Castner has assembled abundant evidence to show that inhomogeneously 
broadened systems saturate in this manner. In the spin-temperature context, there- 
fore, it may be concluded that if T,, < TI in such systems, the spin temperature approach 
gives quantitative agreement with experiment. 

The condition T,, < TI deserves further discussion. The spin-lattice relaxation mech- 
anisms of parsmagnetic spins in a dilute random lattice are a subject of some interest. 
Experimental evidence indicates that a spectral diffusion-cross relaxation (29) mech- 
anism is often dominant (II, 17, 30), whereby “isolated” spins experience spectral 
diffusion through the lattice until they encounter a fast relaxing center (FRC) with 
which they can cross-relax. The FRC is conjectured (20) to be a group of highly coupled 
spins that are in more direct contact with the lattice. The suggestion that T,, < TI 
in such systems, therefore, is very reasonable as the spin-spin reservoir may be expected 
to be in much closer contact with the fast relaxing species than the more isolated Zeeman 
reservoir, due to the (secular) dipolar and exchange interactions. 

The spin temperature approach indicates that the most general form of the satura- 
tion behavior of inhomogeneously broadened systems is given by 

tiw, MO &“‘[ 1 - erf(as)] 
'(O) = Aw,[(l + w:T,T,)( 1 + w: T,T,,)]"2 b71 

where s = [( 1 + of TI T3)/( 1 + w: T,, TJ] Ii2 It is therefore important to realize that . 
the observed saturation behavior may, in general, be expected to be an intermediary 
response between the “normal” saturation behavior of BPP and the T,, < TI result. 
This observation indicates that some caution should be used in obtaining the spin 
packet width by the method employed by Castner (5). A more direct approach for ob- 
taining this parameter, assuming magnetic field modulation is employed, is to increase 
the modulation amplitude (when w1 < l/T,), and observe a pseudo-saturation of the 
first harmonic signal as H,,., is increased through rH,,, s l/T,. This method is completely 
analogous to the method of obtaining the spin-packet width in the rapid passage regime. 
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A comparison of the value of a that may thus be determined with that obtained via the 
Castner (5) technique will then give an estimate of the relative values of TI and T,, 
and detailed examination of the shape of the saturation curve should allow a deter- 
mination of their absolute values. 

Another primary result expressed by Eq. [54] is that the resonance spectra obtained 
under slow passage always have a Voigt lineshape, assuming that the distribution of 
local fields is Gaussian. This type of lineshape is observed experimentally (I I), which is 
another verification of the theory. 

Finally, the validity of the spin temperature approach in situations where spectral 
diffusion is very rapid (a b 1) can be demonstrated from the results of Clough and 
Scott (15). Briefly, in such situations the absorption may be written as 

V(A) = 01 MO Ts 
1 + co: T; + w: Tl T3 + (~“/a*) (1 + w; T3 T,,) ’ WI 

In situations when the system is highly saturated, therefore, 

V(O)/ V( A) = A2 T: T,,/T, E691 

which dependence was experimentally observed (1.5). 
In summary, therefore, these results conclusively demonstrate the validity of the 

spin temperature and spin packet assumptions as applied to inhomogeneously broad- 
ened electron spin systems in both rapid and slow passage situations. Furthermore, 
it is envisaged that a substantial clarification of the spin-relaxation mechanisms of the 
paramagnetic spin species may be achieved within the terms of this model. 

APPENDIX 

The first harmonic variation of the spin temperature ,6 is required. The differential 
equation governing its time dependent evolution (Eq. [34]) may be written 

dP B PI. 00 A(r) /w4 + D2) 
dt + ‘?;; = T,(A(t)* + o: + D*) - T,(A(t)* + wf + 0”) 

PA(t) 40 -- 
A(t)* + of + D* 2701 

where A(t) = A + yH,sinw, t, T,, = T,T,,/(T, - T,,), ojl = yH1, Tl is the Zeeman 
spin-lattice relaxation time and T,, is the relaxation time of the spin-spin reservoir. 
The terms in A(t) are expanded in a Fourier series according to 

A(t) 
A(t)* + co; + D* = f apepi”m’ 

1 
A(t)* + o; + D* = z bq eqiwmr 

A(t) &I 
A(t)* + w; + D* 

= 2 cI eJimnd. 
I 

The primary problem is to evaluate the coefficients b, in Eq. [72], after which it is a 
relatively simple exercise to obtain the a, and cI coefficients of expressions [71] and [73]. 
Equation [72] may be rewritten as 

1 1 
A(t)* + wf + D* = A* + of + D* + (y2 H2/2) + iyH., A(&’ - eTie) - y* H,!f,/4 (e2ie - e-1 

I741 
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where 8 = w, t. We let CI = A, j3 = D and y = yH,/2 and obtain 

1 -1 

A(t)’ + o; + 0’ 
[751 

where CJ = 12 +/I” + yz and x = 2icc(eie - e-l”) f y2(eZie + e-““). 
The expression on the right-hand side of Eq. [75] is expanded in a Taylor series 

according to 

1761 

Noting that x” = (y + z)” where y = 2icr(eie - e -*“) and z = y2(e2*’ + esZie), the Binomial 
theorem may be employed to give 

Similarly 

x” = (y + z)” = 2 (;) ymzn-m. 1771 
l?kO 

JP = (&y)m (e-i0 - eie)m = (2ia)” 2 (y) (-1)-p e-(m-iOfe 
p=O 

[781 

and 

zn-m = y2(n-m) (e2i8 + e-2iO) n-m = y2(n-m) z (’ 9 “) ew4-2n-2wie. ~791 

4=0 

Upon introducing [79] and [78] into [77], and subsequently into [76], we have that 

; 1-x 
( 1 

-1 m n m n-m 

a 
= “3 2, z. qzo GntP~ e(4q+2p+m-2n)re PO1 

where 

C 
n ! (-l)“-p (2irwy)” y2cn-m) 

m”pq=p!g!(m-p)!(n-nl-q)!an+l’ 

We consider terms in the expansion [80] to IZ = 1, or to order 1/02. It is then fairly 
straightforward to show that 

b. = l/a; b, = b-, = -2iayJa; bz = bb2 = y2/a2 Ml 

and that all higher frequency coefficients are equal to zero to second order in l/a* 
Using the results expressed by Eq. [81] it may be shown for Eq. [73] that 

co = 0 

WI 

3uy3 0, 
c3 = c-3 = - 

a2 
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whereas, in Eq. [71] 

2 
a,=*-,-cry 

02 

. 3 
~3=-~~,=-!L 

02 

We now return to Eq. [70] which may be rewritten as 

dB B z + r = -/? 2 (cj + Ab,), e”wmf + B 2 a, e@‘m” 
1 1 P 

1831 

where A = (0’ + 0:)/7’,, and B = j&oO/T1. Using the integrating factor er/TI we have 
that 

dj?eflT1 
- = -P(t) et/T1 

dt F (cj + Ab,) eifomt + B 2 ap e(niom+liT~)*. 
P 

We solve Eq. [85] to first order by the method of successive iterations, obtaining 

/3(t) = eeffT1 p(O) - e-r/T1 jr/i(O) 7 (cl + Ab,) eliam” dt’ 
0 

t 
+ B e-r/T1 

TX 
apee(Pi~Um+llT~~t~d~~ 

b p 

+ Be-'fTi 'dt' 

t' 

.r s 
0 

1 ape(ri%+llT~W' T (cl + ,&,)eli%+'dt" 

0 * 

+ b(O) ebtlT1 /dt’ (2 (cl + Abr)eli”‘mf 1 (c, + Ab,)e”‘amt’dt”. /8S] 
0” ai 1 n 

The first harmonic response in the limits o,T, >> 1 and o,T, < 1 of each of the 
expressions on the right-hand side of Eq. [86] are now considered in order from term 1 
to term 5. 

Obviously there is no first harmonic response from term 1. Term 2 may be written, 
on performing the integration, as 

and the first harmonic response is therefore 

a=- emtiT1 B(O) 2c, sin(o,, t) eFrlTt p(O) AB, cos(0, t) 
Q-+ll io, VW 

As the resonance condition is observed for a time t < l/w, this response is only Iarge 
when w,T, $1. 
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Term 3, when integrated, becomes 

@ = ST, 1 g, cos(qj,) [e*(P%*-‘%) - e-(*/=1+%)] 
P 

where 4, = tan-l(po,T,). The first harmonic response is therefore 

F391 

o1 = BT, a, COST, 2isin(o, t - &). [901 

When o,T, $1, cos$, approaches zero. Thus the response expressed by [90] is 
large only for o,T, < 1. 

The integration of term 4 yields 

@ = -BT: 2 2 ap(cl + &) cos($p) cos(&+,) e*@p+@l+p)* [e*(l+p)@mt - e-*‘T1] 
P 1 

+ e-t’T1 BT, ): 2 a,(q + Ab,) cos 4, e*&p 
P I 

and the first harmonic response is therefore 

al = -BT; cos +1 2 ap(cl + Abl) cos+, e-0p+91) eiomt 
I+P=l 

+l+pTdl ap(cl + AbJ cos+, ei(+p+) eBiwm’ 
I 

+ e- m-1 2 (5 a,(~, + Ab,) costi, e-l@+ eiamr 

- 2 a,(~-~ + AL) cos 4, e -iO, e-iomt . 
I 

[911 

When w,T, 9 1, cos$, % 1 /pw,T, and the only terms in expression [92] that are 
large are those for which p = 0. Under these conditions C#J~ = 7r/2 and it is then straight- 
forward to show that the two terms of expression [92] cancel. On the other hand, when 
o,T, $ 1, the second term of [92] disappears and we obtain from the first term that 

@jl = -BT: (a,, cl + a, cl - a, c2 - a, CJ 2 cos CO,,, t - ABT:(u, bl + a, b,) 2i sin w,t 

[931 
where we have kept terms to order l/&. 

It can be shown, by exactly similar methods to those previously used, that the first 
harmonic response from term 5 is zero for w,T, < 1, whereas when w,T, 9 1 

~1=-~[2Ac,bOcosomt-6ic,c,sinw,t]. 
m 

1941 

Upon collecting terms, noting that j?(O) = BLwo/al where trl = AZ + o12 + D2 and 
employing the relations [81], [82], and [83] together with those used in Eq. [74], we 
obtain that when o,T, $1 

A. ~a A2 rKn Bdt) = ~16 [l-q] sin(w,t-rr)+ 

[951 
15 
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whereas when o,T, 4 1 

B,(t) = 
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