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Introduction

Liposomal drugdelivery systems have come of age in recent years, with
several liposomal drugs currently in advanced clinical trials or already on
the market. It is clear from numerous pre-clinical and clinical studies that
drugs, such as antitumor drugs, packaged in liposomes exhibit reduced
toxicities, while retaining, or gaining enhanced, efficacy. This results, in part,
from altered pharmacokinetics, which lead to drug accumulation at disease
sites, such as tumors, and reduced distribution to sensitive tissues. Fusogenic
liposomal systems that are under development have the potential to deliver
drugs intracellularly, and this is expected to markedly enhance therapeutic
activity. Advances in liposome design are leading to new applications for
the delivery of new biotechnology products, such as recombinant proteins,

antisense  oligonucleotides and cloned genes.
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Liposomes are microscopic spheres with an aqueous core
surrounded by one or more outer shell(s) consisting of
lipids arranged in a bilayer configuration. The potential
use of liposomes as drug carriers was recognized more
than 25 years ago [1] and, since that time, liposomes
have been used in a broad range of pharmaceutical
applications (Table 1). This review first highlights some
of the key advances of the past decade in the design of
liposomes for systemic delivery and then reviews the
most recent literature involving specific applications of
liposomal drug-delivery systems.

Liposome technology

Preparation of liposomes
Liposomes can be prepared by a variety of methods
(extensively reviewed in [2,3]).  In general, on the basis of
size and lamellarity (number of bilayers  present within a
liposome), liposomes are classified into three categories:
multilamellar vesicles (MLVs),  large unilamellar vesicles
(LUVs), and small unilamellar vesicles (SUVs).

Drug loading
Drug loading can be achieved either passively (i.e. the
drug is encapsulated during liposome formation) or
actively (i.e. after liposome formation). Hydrophobic
drugs, such as amphotericin B. taxol or annamycin, can
be directly incorporated into liposomes during vesicle
formation, and the extent of uptake and retention is
governed by drug-lipid interactions. Trapping efficien-
cies of 1 0 0 %  are often achievable, but this is dependent
on the solubility of the drug in the liposome membrane.
Passive encapsulation of water-soluble drugs relies on the
ability of liposomes to trap aqueous buffer containing
a dissolved drug during vesicle formation. Trapping
efficiencies (generally <30%) are limited by the trapped
volume contained in the liposomes and drug solubility.
Alternatively, water-soluble drugs that have protonizable
amine functions can be actively entrapped by employing
pH gradients [4], which can result in trapping efficiencies
approaching 100%

liposomes with prolonged circulation lifetimes
A significant advance in the development of liposomal
drugs has come with the use of specialized lipids, such
as monosialoganglioside GM, or polyethylene glycol
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Table 1. Liposomal  drugs currently under development or on the market.

Product name (if any) Drug

Conventional drugs
ABLC (Abelcet) Amphotericin B

AmBisome Amphotericin B
  

Amphocil Amphotericin B
Doxil (DOX-SL) Doxorubicin

TLC D-99 Doxorubicin

TLC C-S3 Prostaglandin Et

DaunoXome Daunorubicin

AR-121 Nystatin
Tretinoin (AR-623) All-trans  retinoic acid

Annamycin

Vincristine

Company/institution Phase of development

The Liposome  Company, Marketed in UK and Luxembourg. Awaiting
Princeton, USA approval for treatment of aspergilfosis
NeXstar Pharmaceuticals Inc, Marketed in certain countries in Europe
Boulder, USA
Sequus  Pharmaceuticals I  Awaiting FDA approval
Menlo Park, USA FDA-accelerated approval for treatment

of Kaposi’s sarcoma
The Liposome Company Phase I I I
Princeton, USA
The Liposome Company Phase II
Princeton, USA
NeXstar Pharmaceuticals Inc. Approval for treatment of Kaposi’s sarcoma;
Boulder, USA in Phase II trials for breast cancer, small

cell lung cancer, leukemia and lymphoma
Argus Pharmaceuticals Inc, Phase II
The Woodlands, Texas, USA Phase II (leukemia) and phase I

(Kaposi’s  sarcoma)
Argus Pharmaceuticals Inc, Phase I
The Woodlands, Texas, USA
INEX Pharmaceuticals Corporation, Phase I
Vancouver, Canada

Proteins
OncoLipin
OncoVax

IL-2 Oncotherapeutics, Phase II (kidney cancer)
IL-3 and cancer tumor antigen New Jersey, USA Phase I

Genes and antisense  oligonucleotides
Allovectin-7 pHLA-B7/b-2

pHLA-B7/b-2
pHLA-B7/b-2

pHLA-B7/b-2
CFTR  gene
pKCTR

pBMC-neo-hlL-2
pCMV4-AAT

pMP6-IL-2

Vical, San Diego and University Phase I completed
of Michigan, Michigan, USA
Mayo Clinic, Rochester, USA Phase I
University of Chicago, Phase I
Chicago, USA
AZ Cancer Center, USA Phase I
Medical Research Council, UK Phase I completed
University of Alabama, Phase I, pending FDA approval
Alabama, USA
University of Miami, Miami, USA Phase I, pending FDA approval
Vanderbilt University, Phase I, pending FDA approval
Nashville, USA
Duke University, Durham, Phase I, pending FDA approval
North Carolina, USA

modified phosphatidyl ethanolamine (PEG-PE), that
engender long circulation lifetimes when incorporated
into liposomes [5-7] Alternatively, the presence of
entrapped cytotoxic drug can also lead to extended
circulation times [8]. It has been demonstrated that
increased circulation lifetimes enhance the opportunity
for liposomes, administered systemically, to leave the
vascular compartment and enter certain extravascular
regions [9-1]  Tumors, for example, exhibit leaky blood
vessels that have a reduced ability to retain circulating
macromolecules [12, 13]. Liposomes can extravasate in
these regions, thus leading to preferential accumulation
within tumors. Studies have now clearly demonstrated
that long-circulating liposomes containing PEG-PE or

cytotoxic drugs, such as doxorubicin, accumulate within
these sites preferentially compared with conventional
liposomes [9,11,14].

Targeted delivery
It is envisioned that the next generation of liposomal
pharmaceuticals will consist of drug-loaded liposomes
with surface-associated targeting information (Pig. I).
Site-directing targeting ligands, such as monoclonal
antibodies, can be attached to liposomes by either
covalent or non-covalent methods [15-17]. The advent
of novel PEG-PE lipids that allow targeting ligands to
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be conjugated at the distal ends of the PEG spacer
has afforded both effective target binding in vitro and
prolonged circulation times.[le,lP-211.

To date, only two studies have demonstrated the
improved therapeutic activity of liposomal drugs i n
vivo achieved through the use of antibody-mediated
targeting [22,23],  with both studies employing a mon-
oclonal antibody against lung endothelial thrombo-
modulin (mAb 34A) and intravenously injected tumor
cells. The use of immunoliposomes may be limited
because of their potential immunogenicity [24].

In addition to antibodies, glycolipids (e.g. galactose [25]
and mannose  [26]),  proteins (e.g. transferrin [27]  and
asialofetuin [28*]),  and vitamins (e.g. folic acid [18’,29])
have been used to target specific cells via cell surface
receptors.

intracellular delivery
Liposomes can facilitate the intracellular delivery of
drugs by fusing with the target cell. Alterations in the
lipid composition can render liposomes pH sensitive,

leading to enhanced fusogenic tendencies in low pH
compartments such as endosomes [30]. The inclusion
of lipids that are able to form non-bilayer phases,
such as dioleoylphosphatidyl ethanolamine (DOPE), can
promote destabilization of the bilayer, inducing fusion
events. DOPE has been particularly useful for cationic
liposomes complexed with plasmid DNA for gene
delivery [31*,32].

Conventional drugs

A vast literature describes the feasibility of formulating
a wide range of conventional drugs in liposomes, often
resulting in enhanced therapeutic activity and/or re-
duced toxicity compared with the free drug. In general,
altered pharmacokinetics for liposomal drugs can lead
to enhanced drug bioavailability to specific target cells
that reside in the circulation, or more importantly,
to extravascular disease sites such as tumors. Recent

(a)

. Drug

Lipid that enhances circulation lifetimes
(e.g. PEG-PE or monosialoganglioside CM,)

Y Site-directing targeting ligand
(e.g.  monoclonal  antibody or glycolipid)

“t Fusogenic protein

n Fusogenic lipid
(e.g. DOPE)
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Fig. 1. Types of liposomal delivery. (a) Liposomes prepared from natural or synthetic phospholipids containing an encapsulated drug. This type
of drug delivery reduces toxicity, maintains or enhances activity and facilitates accumulation in the disease site. (b) Conventional liposornes
that incorporate lipids enhancing circulation lifetimes. Delivery in these molecules improves access to the disease site and reduces interaction
with phagocytic  cells of the reticulo-endothelial  system. (c) Conventional liposomes with lipids that enhance circulation lifetimes and have
surface-associated targeting information. Drug delivery using this type of liposome  results in an improved therapeutic index and target cell
specific delivery. (d) Fusogenic liposomes  with DOPE or fusogenic proteins. This method allows intracellular drug delivery.
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advances include liposomal formulations of all-trans
retinoic acid [33, 34] and daunorubicin [35-38], which
has recently received Food and Drug Administration
(FDA) approval as a first-line treatment of AIDS-related
advanced Kaposi’s sarcoma. Notable examples are given
below.

Amphoter ic in B
Liposomal amphotericin B drugs are presently approved
for sale in certain European countries and are nearing
regulatory approval in North America. Acute toxicities
associated with amphotericin B are markedly reduced
with liposomal formulations, without losing broad-spec-
trum antifungal activity. Early studies on a variety of
formulations of liposomal amphotericin B demonstrated
the successful treatment of fungal infections in mice
[39,40].  Recent studies have focused on understanding
the possible mechanisms for reduced toxicities, which
include altered pharmacokinetics [41, 42] and increased
association with high-density lipoproteins [43,44].

Although most applications involve am intravenous route
of administration to treat systemic fungal infections,
liposomal amphotericin B can also lbe administered in
an aerosolized form, resulting in treatment of systemic
Candida  albicans  or Cryptococcus neoformans infections in
mice [45,46].

Doxorubicin
Phase III clinical trials on liposomal doxorubicin are
ongoing. As demonstrated in several pre-clinical and
clinical reports, the administration of liposomal doxoru-
bicin significantly reduces drug-associated cardiotoxi-
city beause cardiac uptake of liposome-encapsulated
doxorubicin is substantially reduced compared with
the free drug. A variety of lipo:some-doxorubicin
formulations have been described. These include PEG-
stabilized liposomes [14], as well as conventional egg
phosphatidylcholine/cholesterol  LUVs [8]. R e c e n t l y
described formulations that extend the circulation haIf-
life of doxorubicin inc lude  dipalmitoylphosphatidyl-
choline/cholesterol (1 :l) liposomes containing 10 mol%
paImityl-D-glucuronide,  a uronic acid derivative [47],
and fluorinated liposomes [48].  Targeted liposomal dox-
orubicin systems have recently been described [29,4Y];
however, their efficacy, compared with non-targeted
systems in vivo, has yet to be determined.

Of the above types of formulation, reports of PEG-
coated liposomal doxorubicin dominate the recent
literature [5@,51-61].  Much attention has focused on
the use of liposomal doxorubicin in the treatment
of AIDS-related Kaposi’s sarcoma [55-58,62]. In the
prolonged use of liposomal doxorubicin for AIDS-
related Kaposi’s sarcoma, hand-foot syndrome may be
a limiting toxicity [55].  With regard to liposomal
doxorubicin-induced toxicities, a recent report indicates
that the depletion and impairment of phagocytic activity

of rat liver macrophages by Iiposomal  doxorubicin can be
substantial [63].  Whether this finding applies to humans
remains to be seen. To date, severe hepatic toxicities have
not been reported in any clinical trial.

The increase in therapeutic index of liposomal dox-
orubicin most likely results from the ‘passive* targeting
to tumor sites of liposomes, which because of the
leaky vasculature, exhibit increased extravasation. This is
particularly relevant for liposomes with long circulation
lifetimes. At the tumor site, liposomes appear to act
as a depot for slow release of drug. This model is
supported by the findings of Suzuki et al. [64] indicating
that liposomal doxorubicin remaining on the cell
surface is more cytotoxic than endocytosed liposomal
doxorubicin. Furthermore, several reports indicate that
hyperthermia induces the release of doxorubicin from
long-circulating liposomes and enhances their antitumor
efficacy [59-61].

Natural or acquired resistance to doxorubicin may limit
the clinical use of liposomal doxorubicin. Different
ways of overcoming multidrug resistance, including
the use of modulators that can inhibit drug ef-
flux mediated by P-glycoprotein [65],  have been
explored and have proved effective in in vitro sys-
tems. Several successful attempts have also been de-
scribed, at least in vitro, to overcome multidrug
resistance by employing structurally different analogs
of anthracyclines entrapped in liposomes [66,67*].
For instance, the non-cross-resistant anthracycline an-
tibiotic, annamycin, formulated in dimyristoylphos-
phatidylcholine/dimyristoylphosphatidylglycerol  SUVs
or MLVs, is more effective than doxorubicin against
several tumor models, and multidrug resistance shows
only partial cmssresistance to annamycin, both in vitro
and in vivo [67*].

Vincristine
The benefits of prolonged drug bioavailability as a result
of administering the drug in a liposomal form is perhaps
best exemplified by liposomal vincristine, an important
anticancer drug effective against a wide variety of neo-
plasms. Vincristine is a cell cycle specific drug that arrests
cell growth exclusively during metaphase by attaching
to the growing ends of microtubules and inhibiting
their assembly. As such, prolonged exposure of neoplastic
cells to vincristine should greatly enhance its therapeutic
index. Indeed, increased drug retention and increased
circulation longevity, as achieved by encapsulating
vincristine in distearoylphosphatidylcholine/cholesterol
LUVs with an internal pH of 2.0, act synergistically
to significantly enhance the circulation lifetime of
encapsulated vincristine, the extent and duration of
tumor exposure to vincristine, and ultimately,  the
therapeutic activity of vincristine [68’,69].

The development of a liposomal formulation of vin-
cristine, employing sphingomyelin/cholesterol  LUVs
with an internal pH of 4.0 or 2.0 has recently been de-
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scribed ]7(r*].  This formulation displays significantly en-
hanced stability and antitumor properties compared with
distearoylphosphatidylcholine/cholesterol LW systems
[70”]. Substantially increased vincristine accumulation,
compared with the free drug, is observed in both
peritoneal ascitic  murine P388 tumors and subcutaneous
solid A431 human xenograft tumors. In addition, a
recent report of a liposomal vincristine formulation
employing PEG-PE shows an enhanced therapeutic
index for vincristine entrapped in liposomes against sub-
cutaneously or intraperitoneally implanted P388 tumor
cells [71].

As is the case for several toxic conventional drugs,
liposomal vincristine exhibits reduced toxicity compared
with the free drug [72]. Particularly notable is the greatly
enhanced efficacy that can be achieved for liposomal
vincristine compared with equivalent doses of the bee
drug. Liposomal vincristine is currently in clinical trials.

Proteins and peptides

The majority of current hposomal protein formulations
are still in various preclinical research stages (recently
reviewed in [73]), with one Iiposomal interleukin (IL)-2
drug entering a phase II clinical trial for kidney cancer.
For the production of artificial blood substitutes, the
use of liposomes to encapsulate hemoglobin is actively
being investigated for the in vivo delivery of hemoglobin
without many of the inherent toxicities associated with
the delivery of the free molecule (recently reviewed
in [74-76]). Another area of intense research is the
application of liposomes exhibiting improved adjuvancy
for vaccine development.

Immunomodulaton: interleukins
The feasibility of formulating cytokines in MLVs
[77-791  and in sterically stabilized SUVs [80,81*]
has recently been demonstrated. These Iiposomal cy-
tokines show great promise as immunoadjuvants for
vaccine development. IL-2 enapsulated in sterically
stabilized SUVs (65 nm in diameter) is significantly
more effective than free IL-2 both in increasing
leukocyte number in the blood and spleen and in trig-
gering spleen lymphokine-activated killer-cell activity
[81-J. Co-injection of phosphatidylcholine/cholesterol
(1:l) MLVs containing IL-6 (50 000 U IL-6 mouse-l)
or 65 kDa heat-shock protein antigen (0.03 pg mouse-r
or 0.3 pg mouse-r) significantly enhanced secondary
antibody responses at antigen dosages where other
adjuvants (e.g. Ribi or dimethyldioctadecylammonium-
bromide) exhibit no adjuvant activity [79]. Liposomal
formulations of IL-7 have been shown to enhance
the immune responses of mice vaccinated with either
alum-associated or liposome-formulated recombinant
HIV envelope protein env-2-3SF2 [82]. Antibody titers
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resulting from vaccination with liposome-formulated
antigen were higher than those with alum-associated
antigen, and these antibody responses were enhanced
by concurrent administration of IL-7 liposomes. In
addition, immunogenicity of alum-associated herpes
simplex virus (HSV) gD antigen can b e  enhanced by
a recombinant IL-7 liposomal formulation, resulting in
a significantly reduced severity and course of primary
HSV-2 infection. The sustained release of IL-7, over
a period of >6 days, contributes to the observed effects

]83’1.
Recent reports also indicate that unencapsulated cy-
tokines, at relatively low doses, augment the ther-
apeutic effects of liposomal reagents [84*,85].  For
instance, unencapsulated recombinant IL-2 adminis-
tered intraperitoneally (10 000 U day-r).  in combination
with intravenously administered phosphatidylcholine/
phosphatidylserine (1: 1) MLVs containing a synthetic
peptide  derived from C-reactive protein (RS-83277),
significantly inhibited tumor metastases and prolonged
survival of C57B1/6 mice bearing established pulmonary
metastases of fibrosarcoma T241. The combination
therapy was accompanied by an increase in the number
of Thy1.2 cells in the lungs of RS-83277 MLV/IL-
2 treated animals compared with those receiving
RS-83277 MLVs alone.

Liposomal muramyl tripeptide
Muramyl tripeptide phosphatidyl ethanolamine (MTP-
PE) is a synthetic lipophilic analog of muramyl dipep-
tide, the smallest component of a mycobacterium
capable of stimulating the immune system. MTP-PE
is a potent monocyte/macrophage  activator and is
currently under clinical investigation against metastatic
melanoma and osteosarcoma (reviewed in [86]).  Of
major interest to the development of liposomal MTP-PE
immunomodulators is the recent finding that repeated
per os (oral) administration of l-palmitoyl-2-oleoylphos-
phatidylcholine (POPC) MLVs containing a synthetic
muramyl tripeptide, CGP 19835A (Ciba-Geigy, Basel,
Switzerland), increased the tumoricidal activity of
alveolar and peritoneal macrophages against renal cell
carcinoma [87**].  Liposomes were rapidly absorbed
in the intestine and reached the systemic circulation
within 4 h, as determined by the biodistribution of
radioactively labeled, or N-4-nitrobenzo-2-oxa-1,3-
diazolephosphatidyl ethanolamine fluorescently labeled
POPC-CGP 19835A liposomes. The mechanism of
liposomal muramyl tripeptide antitumor activity is linked
to its activation of monocyte/macrophage  tumoricidal
function, as shown by several recent reports [88-90].

Antisense oligonucleotides, ribozymes and genes

Antisense molecules and ribozymes present interesting
challenges for delivery systems. The efficacy of these
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drugs is dependent on their ability to gain entry into
cells in an intact form; however, they are particularly
susceptible to degradation by nucleases in the bio-
logical milieu and usually cannot cross the target cell
membrane. For example, in general, phosphodiester
antisense oligonucleotides have been reported to have
little or no inhibitory effect in culture because they are
rapidly degraded in the culture medium. In addition,
these molecules are highly charged and can activate
the complement system, resulting in the generation
of anaphylatoxins and other immunomodulators. The
potential of liposomes to encapsulate antisense oligonu-
cleotides or DNA, protecting them from nucleases and
complement, represents a great advantage over other
drug carriers, such as polymers or immunoconjugates.
The further potential for fusogenic  liposomes to promote
intracellular delivery of these compounds is also of major
importance. The application of liposomes to deliver
antisense oligonucleotides, ribozymes and genes is an
area of intense research.

Antisense oligonucleotides and ribozymes
Several reports demonstrate the feasibility of employing
liposomal systems to deliver antisense oligonucleotides,
with the accompanying significant enhancement of effi-
cacy in vitro and in vitro [91,92,93*,9,4*].  Cellular uptake
of fluorescently labeled oligonucleotides is significantly
enhanced by cationic liposomes, as assessed by confocal
laser scanning microscopy, flow cytofluorometry and
laser-scanning microscopy. Intact oligonucleotides are
found in the cytoplasm and nucleus only when they are
delivered by cationic liposomes.

The overwhelming conclusion from studies to date is
that liposomes are able to resolve the problems of ex-
tracellular degradation by nucleases and poor membrane
permeability that are inherent for oligonucleotide drugs.
This has been achieved using a variety of liposomal
compositions, with the majority employing cationic
lipids and DOPE [93*,95-971.  A recent report describes
an extensive physicochemical  study of the aggregation
and fusion  reactions that occur during the formation
of oligonucleotide and cationic liposomal complexes in
solution [98].  Furthermore, several approaches to encap-
sulate antisense oligonucleotides have been described.
A probe sonication method employing phosphatidyl-
choline/cholesterol/dipalmitoylphosphatidylethanol-
amine covalently coupled to L-polylysine  (5.5:3.0:1.5)
has recently been shown to result in liposomes with
a diameter of 1 10-140nm and encapsulation efficien-
cies ranging from 55% to 100% depending on the
oligonucleotide [99].  The use of immunoliposomes has
also been described [100]. Aigner and Caroni [lOl*]
report the use of liposomes composed of phosphatidyl-
choline/phosphatidylserine  (10:1) and myelin proteins
derived from adult rat spinal cord or sciatic nerve to
deliver antisense oligonucleotides to dorsal root ganglion
neurons. In addition, liposomes containing viral fusion
proteins, derived from Sendai virus, have been used to

promote fusion with target cells [94*]. Wang et al. [ 102**]
describe the use of phosphatidylcholine/cholesterol(3:2)
containing 0.5mol% folate conjugated to PEG-dis-
tearoylphosphatidyl ethanolamine to deliver antisense
oligonucleotides against human epidermal  growth factor
(EGF) (up to 2.0x 107 molecules cell-l)  in a folate-spe-
cific manner, as free folic acid competes with EGF
uptake.

An interesting approach to increase the association
of antisense oligonucleotides with liposomes involves
coupling antisense oligonucleotides to cholesterol via
a reversible disulfide bond [103*,104-1071. Using this
method, the association of oligonucleotides with im-
munoliposomes is improved by a factor of -10. The
capacity of modified oligonucleotides directed against
the tat gene of HIV-1 to inhibit HIV-l proliferation in
acutely infected cells has been found to be the same as
the unmodified oligonucleotide on an equimolar basis
(IC50 =0.1 pM) [103*].

To date, only a few papers have reported the use
of cationic  liposomes to deliver ribozymes, a class
of RNA molecule that possesses enzymatic cleavage
activity [108’,109,1  l@,l 11.1. Ribozymes, being RNA
molecules, are highly susceptible to nuclease digestion.
Their stability is markedly increased in vitro in the
presence of cationic  liposomes, with >30% remaining
intact after a 60min incubation in medium containing
10% fetal bovine serum. The feasibility of using a variety
of cationic  liposomes. to deliver ribozyrnes into cultured
cells in vitro has recently been described for ribozymes
directed against leukocyte-type 12-lipoxygenase  mRNA
[lOS*],  bcr-abl  mRNA [l lO$ or multiple drug resistance
(MDR)-1 mRNA [ill’].  Liposome-mediated transfer
of ribozymes  against MDR-1 mRNA  was shown to
reverse the MDR phenotype of adriamycin-resistant
and vindesine-resistant human pleural mesothelioma
cell lines and restored sensitivity to chemotherapeutic
drugs [Ill’]. As with antisense oligonucleotides, it is
likely that liposomal systems will provide significant
advantages to the delivery of ribozyme  molecules in
vivo. The development of such liposomal formulations
is advancing rapidly

Genes
Several reviews on the use of liposomes to deliver
genes have appeared recently (see [112-l 14]; this issue,
Cunliffe, Thatcher and Craig, pp 709-713). Although
the utility of cationic  liposomes in the delivery of
reporter genes was noted in the early 1980s, we are
only now beginning to characterize these systems and
to understand the cellular processes -that are required.
For instance, the role of DOPE in mediating cytosolic
delivery of plasmid DNA has now been elucidated
[32,115].  It has been shown that the principal route
of cationic  liposome-mediated gene transfer occurs after
endocytosis [116*].  Recent electron microscopy studies
have attempted to reveal the structural features of plasmid
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DNA-cationic  liposomal complexes [ 117,118], which
remain relatively poorly characterized. As with all lipo-
somal drugs, well characterized liposomal systems will be
the DNA carrier of choice. Procedures to produce well
defined liposomal systems with encapsulated DNA, to
protect the DNAfrom  nuclease  degradation, are at early
stages of development.

The major barriers in the cellular processing of
liposome-DNA complexes have recently been described
[ 119**].  On average, COS-1 cells take up 3x 105
plasmids  after 6 h of incubation in the presence of
N - [  1-(2,3-dimyristyloxy)propyl]-  N ,  N-dimethyl-  N-(2-
hydroxyethyl) ammonium bromide/DOPE-DNA com-
plexes; however, after 24 h, the majority of the DNA-
lipid complexes aggregate into large perinuclear com-
plexes, with only a small amount of DNA in the
cytoplasm of most cells. Another important factor is that
the lipid and DNA must dissociate before transcription
can occur. The maturation of liposomes as a viable
systemic gene delivery vehicle in vivo will thus require
the following steps: first, liposomes should be targeted
to endocytic receptors in order to enhance the rate
of endocytosis; second, fusion processes (mediated by
lipids or proteins) should be optimized in order to enable
efficient escape from the endosome and entry into the
cytoplasm; and third, cytoplasmic stability and nuclear
targeting of the plasmids should be enhanced.

Results  from a phase I clinical study on cationic
liposome-mediated cystic fibrosis transmembrane regu-
lator (CFTR)  gene transfer to the nasal epithelium of
patients with cystic fibrosis has recently been reported
[12@]. No adverse clinical effects were observed
from cationic  liposome-mediated gene transfer to nasal
epithelia.

Conclusions

After three decades of development, liposomes are
Willing their promise as a drug delivery vehicle with
general applications. Liposomal drugs exhibit reduced
toxicities and retain, or gain enhanced, efficacy com-
pared with their free counterparts. Liposomes that allow
enhanced drug delivery to disease sites, by virtue of long
circulation residence times, are now achieving clinical
acceptance. Also at hand are liposomes that promote
targeting to particular diseased cells within the disease
site. Finally, liposomes are showing particular promise as
intracellular delivery systems for proteins/peptides, anti-

sense molecules, ribozymes and DNA. The development
of liposomes that can be administered systemically and
exhibit targeted and fusogenic  properties appears to be
increasingly within our grasp.
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