Recent advances in liposomal drug-delivery systems

Arcadio Chonn and Pieter R Cullis

INEX Pharmaceuticals Corporation, Vancouver and The University of British Columbia, Vancouver, Canada

Liposomal drugdelivery systems have come of age in recent years, with several liposomal drugs currently in advanced clinical trials or already on the market. It is clear from numerous pre-clinical and clinical studies that drugs, such as antitumor drugs, packaged in liposomes exhibit reduced toxicities, while retaining, or gaining enhanced, efficacy. This results, in part, from altered pharmacokinetics, which lead to drug accumulation at disease sites, such as tumors, and reduced distribution to sensitive tissues. Fusogenic liposomal systems that are under development have the potential to deliver drugs intracellularly, and this is expected to markedly enhance therapeutic activity. Advances in liposome design are leading to new applications for the delivery of new biotechnology products, such as recombinant proteins, antisense oligonucleotides and cloned genes.

Current Opinion in Biotechnology 1995, 6:698-708

Introduction

Liposomes are microscopic spheres with an aqueous core surrounded by one or more outer shell(s) consisting of lipids arranged in a bilayer configuration. The potential use of liposomes as drug carriers was recognized more than 25 years ago [1] and, since that time, liposomes have been used in a broad range of pharmaceutical applications (Table 1). This review first highlights some of the key advances of the past decade in the design of liposomes for systemic delivery and then reviews the most recent literature involving specific applications of liposomal drug-delivery systems.

Liposome technology

Preparation of liposomes

Liposomes can be prepared by a variety of methods (extensively reviewed in [2,3]). In general, on the basis of size and lamellarity (number of bilayers present within a liposome), liposomes are classified into three categories: multilamellar vesicles (MLVs), large unilamellar vesicles (LUVs), and small unilamellar vesicles (SUVs).

Drug loading

Drug loading can be achieved either passively (i.e. the drug is encapsulated during liposome formation) or actively (i.e. after liposome formation). Hydrophobic drugs, such as amphotericin B. taxol or annamycin, can be directly incorporated into liposomes during vesicle formation, and the extent of uptake and retention is governed by drug-lipid interactions. Trapping efficiencies of 100% are often achievable, but this is dependent on the solubility of the drug in the liposome membrane. Passive encapsulation of water-soluble drugs relies on the ability of liposomes to trap aqueous buffer containing a dissolved drug during vesicle formation. Trapping efficiencies (generally <30%) are limited by the trapped volume contained in the liposomes and drug solubility. Alternatively, water-soluble drugs that have protonizable amine functions can be actively entrapped by employing pH gradients [4], which can result in trapping efficiencies approaching 100%

liposomes with prolonged circulation lifetimes

A significant advance in the development of liposomal drugs has come with the use of specialized lipids, such as monosialoganglioside G_{M1} or polyethylene glycol

Abbreviations

CFTR—cystic fibrosis transmembrane receptor; DOPE—dioleoylphosphatidyl ethanolamine; EGF—epidermal growth factor; FDA-Food and Drug Administration; HSV—herpes simpex virus; IL—interleukin; WV-large unilamellar vesicle; MDR—multidrug resistance; MLV—multilamellar vesicle; MTP-PE—muramyl tripeptide phosphatidyl ethanolamine; PEG-P&polyethylene glycol modified phosphatidyl ethanolamine; POPC—1-palmitoyl-2-oleoylphosphatidylcholine; SUV-small unilarnellar vesicle.

© Current Biology Ltd ISSN 0958-1669

Product name (if any) Drug	Company/institution	Phase of development
Conventional drugs			
ABLC (Abelcet)	Amphotericin B	The Liposome Company, Princeton, USA	Marketed in UK and Luxembourg. Awaiting approval for treatment of aspergilfosis
AmBisome	Amphotericin B	NeXstar Pharmaceuticals Inc, Boulder, USA	Marketed in certain countries in Europe
Amphocil	Amphotericin B	Sequus Pharmaceuticals Inc.	Awaiting FDA approval
Doxil (DOX-SL)	Doxorubicin	Menlo Park, USA	FDA-accelerated approval for treatment of Kaposi's sarcoma
TLC D-99	Doxorubicin	The Liposome Company Princeton, USA	Phase III
TLC C-S3	Prostaglandin E ₁	The Liposome Company Princeton, USA	Phase II
DaunoXome	Daunorubicin	NeXstar Pharmaceuticals Inc. Boulder, USA	Approval for treatment of Kaposi's sarcoma in Phase II trials for breast cancer, small cell lung cancer, leukemia and lymphoma
AR-121	Nystatin	Argus Pharmaceuticals Inc,	Phase II
Tretinoin (AR-623)	All-trans retinoic acid	The Woodlands, Texas, USA	Phase II (leukemia) and phase (Kaposi's sarcoma)
	Annamycin	Argus Pharmaceuticals Inc, The Woodlands, Texas, USA	Phase
	Vincristine	INEX Pharmaceuticals Corporation, Vancouver, Canada	Phase I
Proteins			
OncoLipin	IL-2	Oncotherapeutics,	Phase II (kidney cancer)
OncoVax	IL-3 and cancer tumor antigen	New Jersey, USA	Phase I
Genes and antisense	oligonucleotides		
Allovectin-7	pHLA-B7/b-2	Vical, San Diego and University of Michigan, Michigan, USA	Phase I completed
	pHLA-B7/b-2	Mayo Clinic, Rochester, USA	Phase
	pHLA-B7/b-2	University of Chicago, Chicago, USA	Phase I
	pHLA-B7/b-2	AZ Cancer Center, USA	Phase I
	CFTR gene	Medical Research Council, UK	Phase completed
	pKCTR	University of Alabama, Alabama, USA	Phase I, pending FDA approval
	pBMC-neo-hIL-2	University of Miami, Miami, USA	Phase I, pending FDA approval
	pCMV4-AAT	Vanderbilt University, Nashville, USA	Phase I, pending FDA approval
	pMP6-IL-2	Duke University, Durham, North Carolina, USA	Phase I, pending FDA approval

modified phosphatidyl ethanolamine (PEG-PE), that engender long circulation lifetimes when incorporated into liposomes [5-7] Alternatively, the presence of entrapped cytotoxic drug can also lead to extended circulation times [8]. It **has** been demonstrated that increased circulation lifetimes **enhance the** opportunity for liposomes, administered systemically, to leave the vascular compartment and enter certain extravascular regions [9-1] Tumors, for example, exhibit leaky blood vessels that have a reduced ability to retain circulating macromolecules [12, 13]. Liposomes can extravasate in these regions, thus leading to preferential accumulation within tumors. Studies have now clearly demonstrated that long-circulating liposomes containing PEG-PE or

cytotoxic drugs, such as doxorubicin, accumulate within these sites preferentially compared with conventional liposomes [9,11,14].

Targeted delivery

It is envisioned that the next generation of liposomal pharmaceuticals will consist of drug-loaded liposomes with surface-associated targeting information (Pig. I). Site-directing targeting ligands, such as monoclonal antibodies, can be attached to liposomes by either covalent or non-covalent methods [15-17]. The advent of novel PEG-PE lipids that allow targeting ligands to

be conjugated at the distal ends of the PEG spacer has afforded both effective target binding in vitro and prolonged circulation times [18•,19-21].

To date, only two studies have demonstrated the improved therapeutic activity of liposomal drugs *in* vivo achieved through the use of antibody-mediated targeting [22,23], with both studies employing a monoclonal antibody against lung endothelial thrombomodulin (mAb 34A) and intravenously injected tumor cells. The use of immunoliposomes may be limited because of their potential immunogenicity [24].

In addition to antibodies, glycolipids (e.g. galactose [25] and mannose [26]), proteins (e.g. transferrin [27] and asialofetuin [28•]), and vitamins (e.g. folic acid [18•,29]) have been used to target specific cells via cell surface receptors.

intracellular delivery

Liposomes can facilitate the intracellular delivery of drugs by fusing with the target cell. Alterations in the lipid composition can render liposomes pH sensitive, leading to enhanced fusogenic tendencies in low **pH** compartments such as endosomes [30]. The inclusion of lipids that are able to form non-bilayer phases, such as dioleoylphosphatidyl ethanolamine (DOPE), can promote destabilization of the bilayer, inducing fusion events. DOPE has been particularly useful for cationic liposomes complexed with plasmid DNA for gene delivery [31•,32].

Conventional drugs

A vast literature describes the feasibility of formulating a wide range of conventional drugs in liposomes, often resulting in enhanced therapeutic activity and/or reduced toxicity compared with the free drug. In general, altered pharmacokinetics for liposomal drugs can lead to enhanced drug bioavailability to specific target cells that reside in the circulation, or more importantly, to extravascular disease sites such as tumors. Recent

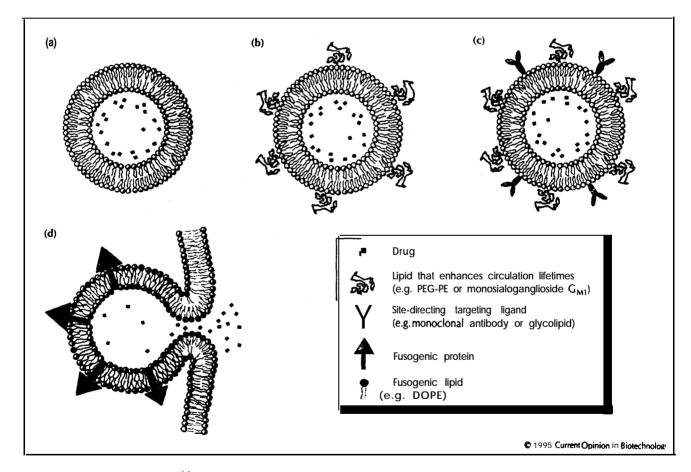


Fig. 1. Types of liposomal delivery. (a) Liposomes prepared from natural or synthetic phospholipids containing an encapsulated drug. This type of drug delivery reduces toxicity, maintains or enhances activity and facilitates accumulation in the disease site. (b) Conventional liposomes that incorporate lipids enhancing circulation lifetimes. Delivery in these molecules improves access to the disease site and reduces interaction with phagocytic cells of the reticulo-endothelial system. (c) Conventional liposomes with lipids that enhance circulation lifetimes and have surface-associated targeting information. Drug delivery using this type of liposome results in an improved therapeutic index and target cell specific delivery. (d) Fusogenic liposomes with DOPE or fusogenic proteins. This method allows intracellular drug delivery.

advances include liposomal formulations of all-trans retinoic acid [33, 34] and daunorubicin [35-38], which has recently received Food and Drug Administration (FDA) approval as a first-line treatment of AIDS-related advanced Kaposi's sarcoma. Notable examples are given below.

Amphotericin B

Liposomal amphotericin B drugs are presently approved for sale in certain European countries and are nearing regulatory approval in North America. Acute toxicities associated with amphotericin B are markedly reduced with liposomal formulations, without losing broad-spectrum antifungal activity. Early studies on a variety of formulations of liposomal amphotericin B demonstrated the successful treatment of fungal infections in mice [39,40]. Recent studies have focused on understanding the possible mechanisms for reduced toxicities, which include altered pharmacokinetics [41,42] and increased association with high-density lipoproteins [43,44].

Although most applications involve am intravenous route of administration to treat **systemic** fungal infections, liposomal amphotericin B can also **lbe** administered in an aerosolized form, resulting in treatment of systemic **Candida albicans** or *Cryptococcus neoformans* infections in mice [45,46].

Doxorubicin

Phase III clinical trials on liposomal doxorubicin are ongoing. As demonstrated in several pre-clinical and clinical reports, the administration of liposomal doxorubicin significantly reduces drug-associated cardiotoxicity beause cardiac uptake of liposome-encapsulated doxorubicin is substantially reduced compared with the free drug. A variety of lipo:some-doxorubicin formulations have been described. These include PEGstabilized liposomes [14], as well as conventional egg phosphatidylcholine/cholesterol LUVs [8]. Recently described formulations that extend the circulation halflife of doxorubicin include dipalmitoylphosphatidylcholine/cholesterol (1 :1) liposomes containing 10 mol% palmityl-D-glucuronide, a uronic acid derivative [47], and fluorinated liposomes [48]. Targeted liposomal doxorubicin systems have recently been described [29,49°]; however, their efficacy, compared with non-targeted systems in vivo, has yet to be determined.

Of the above types of formulation, reports of PEG-coated liposomal doxorubicin dominate the recent literature [50°,51-61]. Much attention has focused on the use of liposomal doxorubicin in the treatment of AIDS-related Kaposi's sarcoma [55-58,62]. In the prolonged use of liposomal doxorubicin for AIDS-related Kaposi's sarcoma, hand-foot syndrome may be a limiting toxicity [55]. With regard to liposomal doxorubicin-induced toxicities, a recent report indicates that the depletion and impairment of phagocytic activity

of rat liver macrophages by Iiposomal doxorubicin can be substantial [63]. Whether this finding applies to humans remains to be seen. To date, severe hepatic toxicities have not been reported in any clinical trial.

The increase in therapeutic index of liposomal doxorubicin most likely results from the 'passive* targeting to tumor sites of liposomes, which because of the leaky vasculature, exhibit increased extravasation. This is particularly relevant for liposomes with long circulation lifetimes. At the tumor site, liposomes appear to act as a depot for slow release of drug. This model is supported by the findings of Suzuki et al. [64] indicating that liposomal doxorubicin remaining on the cell surface is more cytotoxic than endocytosed liposomal doxorubicin. Furthermore, several reports indicate that hyperthermia induces the release of doxorubicin from long-circulating liposomes and enhances their antitumor efficacy [59-61].

Natural or acquired resistance to doxorubicin may limit the clinical use of liposomal doxorubicin. Different ways of overcoming multidrug resistance, including the use of modulators that can inhibit drug efflux mediated by P-glycoprotein [65], have been explored and have proved effective in in vitro systems. Several successful attempts have also been described, at least in vitro, to overcome multidrug resistance by employing structurally different analogs of anthracyclines entrapped in liposomes [66,67°]. For instance, the non-cross-resistant anthracycline antibiotic, annamycin, formulated in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol or MLVs, is more effective than doxorubicin against several tumor models, and multidrug resistance shows only partial cmssresistance to annamycin, both in vitro and in vivo [67°].

Vincristine

The benefits of prolonged drug bioavailability as a result of administering the drug in a liposomal form is perhaps best exemplified by liposomal vincristine, an important anticancer drug effective against a wide variety of neoplasms. Vincristine is a cell cycle specific drug that arrests cell growth exclusively during metaphase by attaching to the growing ends of microtubules and inhibiting their assembly. As such, prolonged exposure of neoplastic cells to vincristine should greatly enhance its therapeutic index. Indeed, increased drug retention and increased circulation longevity, as achieved by encapsulating vincristine in distearoylphosphatidylcholine/cholesterol LUVs with an internal pH of 2.0, act synergistically to significantly enhance the circulation lifetime of encapsulated vincristine, the extent and duration of tumor exposure to vincristine, and ultimately, the therapeutic activity of vincristine [68•,69].

The development of a liposomal formulation of vincristine, employing sphingomyelin/cholesterol LUVs with an internal pH of 4.0 or 2.0 has recently been de-

scribed [70**]. This formulation displays significantly enhanced stability and antitumor properties compared with distearoylphosphatidylcholine/cholesterol LW systems [70**]. Substantially increased vincristine accumulation, compared with the free drug, is observed in both peritoneal ascitic murine P388 tumors and subcutaneous solid A431 human xenograft tumors. In addition, a recent report of a liposomal vincristine formulation employing PEG-PE shows an enhanced therapeutic index for vincristine entrapped in liposomes against subcutaneously or intraperitoneally implanted P388 tumor cells [71].

As is the case for several toxic conventional drugs, liposomal vincristine exhibits reduced toxicity compared with the free drug [72]. Particularly notable is the greatly enhanced efficacy that can be achieved for liposomal vincristine compared with equivalent doses of the bee drug. Liposomal vincristine is currently in clinical trials.

Proteins and peptides

The majority of current hposomal protein formulations are still in various preclinical research stages (recently reviewed in [73]), with one Iiposomal interleukin (IL)-2 drug entering a phase II clinical trial for kidney cancer. For the production of artificial blood substitutes, the use of liposomes to encapsulate hemoglobin is actively being investigated for the *in vivo* delivery of hemoglobin without many of the inherent toxicities associated with the delivery of the free molecule (recently reviewed in [74-76]). Another area of intense research is the application of liposomes exhibiting improved adjuvancy for vaccine development.

Immunomodulaton: interleukins

The feasibility of formulating cytokines in MLVs [77-791 and in sterically stabilized SUVs [80,81°] has recently been demonstrated. These Iiposomal cytokines show great promise as immunoadjuvants for vaccine development. IL-2 enapsulated in sterically stabilized SUVs (65 nm in diameter) is significantly more effective than free IL-2 both in increasing leukocyte number in the blood and spleen and in triggering spleen lymphokine-activated killer-cell activity [81•]. Co-injection of phosphatidylcholine/cholesterol (1:1) MLVs containing IL-6 (50 000 U IL-6 mouse-1) or 65 kDa heat-shock protein antigen (0.03 µg mouse-r or 0.3 ug mouse-r) significantly enhanced secondary antibody responses at antigen dosages where other adjuvants (e.g. Ribi or dimethyldioctadecylammoniumbromide) exhibit no adjuvant activity [79]. Liposomal formulations of IL-7 have been shown to enhance the immune responses of mice vaccinated with either alum-associated or liposome-formulated recombinant HIV envelope protein env-2-3SF2 [82]. Antibody titers

resulting from vaccination with liposome-formulated antigen were higher than those with alum-associated antigen, and these antibody responses were enhanced by concurrent administration of IL-7 liposomes. In addition, immunogenicity of alum-associated herpes simplex virus (HSV) gD antigen can be enhanced by a recombinant IL-7 liposomal formulation, resulting in a significantly reduced severity and course of primary HSV-2 infection. The sustained release of IL-7, over a period of >6 days, contributes to the observed effects [83•].

Recent reports also indicate that unencapsulated cytokines, at relatively low doses, augment the therapeutic effects of liposomal reagents [84*,85]. For instance, unencapsulated recombinant IL-2 administered intraperitoneally (10 000 U day-1), in combination with intravenously administered phosphatidylcholine/phosphatidylserine (1: 1) MLVs containing a synthetic peptide derived from C-reactive protein (RS-83277), significantly inhibited tumor metastases and prolonged survival of C57B1/6 mice bearing established pulmonary metastases of fibrosarcoma T241. The combination therapy was accompanied by an increase in the number of Thy1.2+ cells in the lungs of RS-83277 MLV/IL-2 treated animals compared with those receiving RS-83277 MLVs alone.

Liposomal muramyl tripeptide

Muramyl tripeptide phosphatidyl ethanolamine (MTP-PE) is a synthetic lipophilic analog of muramyl dipeptide, the smallest component of a mycobacterium capable of stimulating the immune system. MTP-PE is a potent monocyte/macrophage activator and is currently under clinical investigation against metastatic melanoma and osteosarcoma (reviewed in [86]). Of major interest to the development of liposomal MTP-PE immunomodulators is the recent finding that repeated per os (oral) administration of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) MLVs containing a synthetic muramyl tripeptide, CGP 19835A (Ciba-Geigy, Basel, Switzerland), increased the tumoricidal activity of alveolar and peritoneal macrophages against renal cell carcinoma [87.]. Liposomes were rapidly absorbed in the intestine and reached the systemic circulation within 4 h, as determined by the biodistribution of radioactively labeled, or N-4-nitrobenzo-2-oxa-1,3diazolephosphatidyl ethanolamine fluorescently labeled POPC-CGP 19835A liposomes. The mechanism of liposomal muramyl tripeptide antitumor activity is linked to its activation of monocyte/macrophage tumoricidal function, as shown by several recent reports [88-90].

Antisense oligonucleotides, ribozymes and genes

Antisense molecules and ribozymes present interesting challenges for delivery systems. The efficacy of these drugs is dependent on their ability to gain entry into cells in an intact form; however, they are particularly susceptible to degradation by nucleases in the biological milieu and usually cannot cross the target cell membrane. For example, in general, phosphodiester antisense oligonucleotides have been reported to have little or no inhibitory effect in culture because they are rapidly degraded in the culture medium. In addition, these molecules are highly charged and can activate the complement system, resulting in the generation of anaphylatoxins and other immunomodulators. The potential of liposomes to encapsulate antisense oligonucleotides or DNA, protecting them from nucleases and complement, represents a great advantage over other drug carriers, such as polymers or immunoconjugates. The further potential for fusogenic liposomes to promote intracellular delivery of these compounds is also of major importance. The application of liposomes to deliver antisense oligonucleotides, ribozymes and genes is an area of intense research.

Antisense oligonucleotides and ribozymes

Several reports demonstrate the feasibility of employing liposomal systems to deliver antisense oligonucleotides, with the accompanying significant enhancement of efficacy in vitro and in vitro [91,92,93°,94°]. Cellular uptake of fluorescently labeled oligonucleotides is significantly enhanced by cationic liposomes, as assessed by confocal laser scanning microscopy, flow cytofluorometry and laser-scanning microscopy. Intact oligonucleotides are found in the cytoplasm and nucleus only when they are delivered by cationic liposomes.

The overwhelming conclusion from studies to date is that liposomes are able to resolve the problems of extracellular degradation by nucleases and poor membrane permeability that are inherent for oligonucleotide drugs. This has been achieved using a variety of liposomal compositions, with the majority employing cationic lipids and DOPE [93•,95–97]. A recent report describes an extensive physicochemical study of the aggregation and fusion reactions that occur during the formation of oligonucleotide and cationic liposomal complexes in solution [98]. Furthermore, several approaches to encapsulate antisense oligonucleotides have been described. A probe sonication method employing phosphatidyl-choline/cholesterol/dipalmitoylphosphatidylethanol-

amine covalently coupled to L-polylysine (5.5:3.0:1.5) has recently been shown to result in liposomes with a diameter of 1 10-140nm and encapsulation efficiencies ranging from 55% to 100% depending on the oligonucleotide [99]. The use of immunoliposomes has also been described [100]. Aigner and Caroni [101•] report the use of liposomes composed of phosphatidyl-choline/phosphatidylserine (10:1) and myelin proteins derived from adult rat spinal cord or sciatic nerve to deliver antisense oligonucleotides to dorsal root ganglion neurons. In addition, liposomes containing viral fusion proteins, derived from Sendai virus, have been used to

promote fusion with target cells [94•]. Wang et al. [102••] describe the use of phosphatidylcholine/cholesterol(3:2) containing 0.5mol% folate conjugated to PEG-distearoylphosphatidyl ethanolamine to deliver antisense oligonucleotides against human epidermal growth factor (EGF) (up to 2.0x 107 molecules cell-1) in a folate-specific manner, as free folic acid competes with EGF uptake.

An interesting approach to increase the association of antisense oligonucleotides with liposomes involves coupling antisense oligonucleotides to cholesterol via a reversible disulfide bond [103 $^{\circ}$,104–107]. Using this method, the association of oligonucleotides with immunoliposomes is improved by a factor of -10. The capacity of modified oligonucleotides directed against the *tat* gene of HIV-1 to inhibit HIV-1 proliferation in acutely infected cells has been found to be the same as the unmodified oligonucleotide on an equimolar basis (IC50 =0.1 μ M) [103 $^{\circ}$].

To date, only a few papers have reported the use of cationic liposomes to deliver ribozymes, a class of RNA molecule that possesses enzymatic cleavage activity [108•,109,110•,111•]. Ribozymes, being RNA molecules, are highly susceptible to nuclease digestion. Their stability is markedly increased in vitro in the presence of cationic liposomes, with >30% remaining intact after a 60min incubation in medium containing 10% fetal bovine serum. The feasibility of using a variety of cationic liposomes. to deliver ribozyrnes into cultured cells in vitro has recently been described for ribozymes directed against leukocyte-type 12-lipoxygenase mRNA [108•], bcr-abl mRNA [110•], or multiple drug resistance (MDR)-1 mRNA [111•]. Liposome-mediated transfer of ribozymes against MDR-1 mRNA was shown to reverse the MDR phenotype of adriamycin-resistant and vindesine-resistant human pleural mesothelioma cell lines and restored sensitivity to chemotherapeutic drugs [Ill']. As with antisense oligonucleotides, it is likely that liposomal systems will provide significant advantages to the delivery of ribozyme molecules in vivo. The development of such liposomal formulations is advancing rapidly

Genes

Several reviews on the use of liposomes to deliver genes have appeared recently (see [112-114]; this issue, Cunliffe, Thatcher and Craig, pp 709-713). Although the utility of cationic liposomes in the delivery of reporter genes was noted in the early 1980s, we are only now beginning to characterize these systems and to understand the cellular processes -that are required. For instance, the role of DOPE in mediating cytosolic delivery of plasmid DNA has now been elucidated [32,115]. It has been shown that the principal route of cationic liposome-mediated gene transfer occurs after endocytosis [116]. Recent electron microscopy studies have attempted to reveal the structural features of plasmid

DNA-cationic liposomal complexes [117,118], which remain relatively poorly characterized. As with all liposomal drugs, well characterized liposomal systems will be the DNA carrier of choice. Procedures to produce well defined liposomal systems with encapsulated DNA, to protect the DNAfrom nuclease degradation, are at early stages of development.

The major barriers in the cellular processing of liposome-DNA complexes have recently been described [119••]. On average, COS-1 cells take up 3x 105 plasmids after 6 h of incubation in the presence of N-[1-(2,3-dimyristyloxy)propyl]- N, N-dimethyl- N-(2hydroxyethyl) ammonium bromide/DOPE-DNA complexes; however, after 24 h, the majority of the DNAlipid complexes aggregate into large perinuclear complexes, with only a small amount of DNA in the cytoplasm of most cells. Another important factor is that the lipid and DNA must dissociate before transcription can occur. The maturation of liposomes as a viable systemic gene delivery vehicle in vivo will thus require the following steps: first, liposomes should be targeted to endocytic receptors in order to enhance the rate of endocytosis; second, fusion processes (mediated by lipids or proteins) should be optimized in order to enable efficient escape from the endosome and entry into the cytoplasm; and third, cytoplasmic stability and nuclear targeting of the plasmids should be enhanced.

Results from a phase I clinical study on cationic liposome-mediated cystic fibrosis transmembrane regulator (CFTR) gene transfer to the nasal epithelium of patients with cystic fibrosis has recently been reported [120*]. No adverse clinical effects were observed from cationic liposome-mediated gene transfer to nasal epithelia.

Conclusions

After three decades of development, liposomes are Willing their promise as a drug delivery vehicle with general applications. Liposomal drugs exhibit reduced toxicities and retain, or gain enhanced, efficacy compared with their free counterparts. Liposomes that allow enhanced drug delivery to disease sites, by virtue of long circulation residence times, are now achieving clinical acceptance. Also at hand are liposomes that promote targeting to particular diseased cells within the disease site. Finally, liposomes are showing particular promise as intracellular delivery systems for proteins/peptides, antisense molecules, ribozymes and DNA. The development of liposomes that can be administered systemically and exhibit targeted and fusogenic properties appears to be increasingly within our grasp.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- • of outstanding interest
- Sessa G, Weissmann G: Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res 1968, 9:3 10-3 18.
- Cregoridadis G: Liposome preparation and related techniques. In Liposome Technology, vol 1, edn 2. Edited by Cregoriadis G.Boca Raton: CRC Press; 1993:1–63.
- Watwe RM, Bellare JR: Manufacture of liposomes: a review. Curr Sci 1995, 68:715-724.
- Mayer LD, Madden TM, Bally MU, Cullis PR. pH gradientmediated drug entrapment in liposomes. In Liposome Technology, vol 2, edn 2. Edited by Gregoriadis G. Boca Raton: CRC Press; 1993;27–44.
- Allen TM, Chonn A: Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Len 1987, 223:42-46.
- Klibanov AL, Maruyama K, Torchilin VP, Huang L: Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Len 1990, 268:235–237.
- Blume G, Cevc G: Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1990, 1029:91-97.
- a. Bally MB, Nayar R, Masin D, Hope MJ, Cullis PR, Mayer LD: Liposomes with entrapped doxorubicin exhibit extended blood residence times. Biochim Biophys Acta 1990, 1023:133–139.
- Cabizon A, Papahadjopoulos D: Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. *Proc Natl Acad Sci USA 1988*, 85:6949–6953.
- Bakker-Woundenberg IAJM, Lokerse AF, Ten-Kate MT, Storm G: Enhanced localization of liposomes with prolonged blood circulation time in infected lung tissue. Biochim Biophys Acta 1992, 1138:318–326.
- Wu NZ, Da D, Rudoll TL, Needham D, Whorton AR. Dewhirst MW: Increased microvascular permeability contributes to preferential accumulation of stealth liposomes in tumor tissue. Cancer Res 1993, 53:3765–3770.
- Gerlowski LE, Jain RK: Microvascular permeability of normal and neoplastic tissues. Microvasc Res 1986, 31:288–305.
- Dvorak HF, Nagy)A, Dvorak JT, Dvorak AM: Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 1988, 133:95–109.
- Papahadjopoulos D, Allen TM, Cabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C, Martin FJ: Sterically stabilized liposomes; improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991, 88:11460-11464.
- Allen TM: Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci 1994, 15:215-220.
- Loughrey HC, Choi LS, Wong KF, Cullis PR, Bally MB: Preparation of streptavidin-liposomes for use in ligand specific targeting applications. In Liposome Technology, vol 3, edn 2. Edited by Cregoriadis G. Boca Raton: CRC Press; 1993:163–178.
- Laukkanen ML, Alfthan K, Keinanen K: Functional immunoliposomes harboring a biosynthetically lipid-tagged singlechain antibody. Biochemistry 1994, 33:11664–11670.
- Lee RJ, Low PS: Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994, 269:3198–3204.

A study showing that liposomes can be efficiently targeted to receptorbearing tumor cells when conjugated to folate via a long PEG-spacer.

- Blume G, Cevc G, Crommelin MDJA, Bakker-Woudenberg IAJM, Kluft C, Storm G: Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1993, 1149:180-184.
- Maruyama K, Takizawa T, Yuda T, Kennel SJ, Huang L, lwatsuruM: Targetability of novd immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodii. Biochim Siophys Acta 1995, 1234:74-80.
- 21. Allen TM, Brandeis E, Hansen CB, Kao CY, Zalipsky S: A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in effiit targeting to cancer cells. Biochim Siophys Acta 1995, 1237:99-108.
 - Ahmad I, Longenecker M, Samuel J, Allen TM: Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res 1993, 53:1484–1488.
 - Mori A, Kennel SJ, Van Borssum-Waalkes M, Scherphof CL, Huang L: Characterization of organ-specific immunoliposomes for delivery of 3',5'-O-dipalmitoyl-5-fluoro-2'-deoxyuridine in a mouse lung-metastasis model. Cancer Chemother Pharmacol 1995, 35:447-456.
 - Phillips NC, Oahman J: Immunogenicity of immunoliposomes: reactivity against specks-specific IgG and liposomal phospholipids. Immunol Lett 1995, 45:149–152.
 - Van Berkel TJC, Kruijt JK, Spanjer HH, Kempen HJM, Scherphof CL: Targeting of liposomes with tris-galactoside-terminated cholesterol. Io Liposome Technology. vol 3, edn 2. Edited by Cregoriadis G. Boca Raton: CRC Press; 1993:219–230.
 - Barratt G, Schuber F: Targeting of liposomes with mannose-terminated lii in Liposome Technology, vol 3, edn 2. Edited by Gregoriadis G, Boca Raton: CRC Press; 1993:199–218.
 - Stavridis JC, Deliconstantinos G, Psallidopoulos MC, Armenakas NA, Hadjiminas DJ, Hadjiminas J: Construction of transferrincoated liposomes for in vivo transport of exogenous DNA to bone marrow erythrobiasts in rabbits. Exp Cell Res 1986, 164:568-572.
 - 28. Hara T, Aramaki Y, Takada S, Koike K, Tsuchiya S: Receptor-mediated transfer of pSV2CAT DNA to a human hepatoblastoma all lii HepG2 using asialofetuin-labeled cationic liposomes. Gene 1995, 159:167-174.

Describes the dehydration/rehydration method for encapsulating plasmid DNA, 60% of which is protected from DNase I treatment. Uptake of asialdetuin-labeled cationic liposomes by HepG2 ceils was competitively inhibited by free asialofetuin and was sensitive to cytochalasin B treatment. Transection activity was significantly enhanced compared with transection using non-labeled liposomes.

- Lee RJ, Low PS: Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Siophys Acta 1995, 1233:134-144.
- Tari AM, Zhou F, Huang L: Two types of pH-sensitive immunoliposomes. In Liposome Technology, vol 3, edn 2. Edited by Gregoriadis G. Boca Raton: CRC Press: 1993:289–300.
- Feigner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Feigner PL: Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem. 1994, 269:2550-2561.

A comprehensive study of structure/function relationships of cationic lipids and neutral lipids for optimization of cationic liposome-mediated gene transfer.

- Farhood H, Setbina N, Huang L: The rok of dilleoyl phosphatidylethanolamine in cationic r i mediated gene transfer. Biochim Biophys Acia 1995, 1235:289–295.
- Parthasarathy R, Sacks PC, Harris D, Brock H, Mehta K: Interaction Of liposome-associated all-trans-retinoic acid with squamous carcinoma cells. Cancer Chemother Pharmacol 1994, 34:527-534.

- Mehta K. Sadeghi T, McQueen T, Lopez-Berestein G: lile encapsulation circumvents the hepatic clearance mechanisms of all-trans-retinoic acid. Leuk Res 1994, 18:587-S%.
- Gill PS, Espina BM, Muggia F, Cabriales S, Tulpule A, Esplin JA, Liebman HA, Forssen E, Ross ME, Levine AM: Phase 1/11 clinical and pharmacokinetic evaluation of liposomal daunorubicin. J Clin Oncol 1995, 13:996–1003.
- Gauglianone P, Chan K, DelaFlor-Weiss E, Hanixh R, Jeffers S, Sharma D, Muggia F: Phase I and pharmacologic study of liposomal daunorubicin (DaunoXome). Invest New Drugs 1 994, 12:103–110.
- Eckardt JR, Campbell E, Burris HA, Weiss CR, Rodriguez GI, Fields SM, Thurman AM, Peacock NW, Cobb P, Rothenberg ML: A phase II trial of DaunoXome, liposome-encapsulated daunorubiiin, in patients with metastatic adenocarcinoma of the colon. Am J Clin Oncol 1994, 17:498-501.
- Schurmann D, Dormann A, Grunewald T, Ruf 8: Successful treatment of AIDS-related pulmonary Kaposi's sarcoma with liposomal daunorubicin. Eur Respir J 1994, 7:824–825.
- Wasan KM, Lopez-Berestein G: The past, present, and future uses of liposomes in treating infectious diseases.
 Immunopharmacol Immunotoxicol 1995, 17: I-I 5.
- Mitsutake K, Kohno S, Miyazaki Y, Noda T, Miyazaki H, Miyataki T, Kaku M, Koga H, Hara K: In vitro and in vivo antifungal activities of liposomal amphotericin 8, and amphotericin B lipid complex. Mycopathologia 1994, 128:13-17.
- Heinemann V, Kahny B, Oebus A, Wachholr K, Jehn U: Pharmacokinetics of liposomal amphotericin 8 (AmBisome) versus other lipid-based formulations. Bone Marrow Transplant 1994, 14:58–59.
- Lee JW, Amantea MA, Francis PA, Navarro EE, Bahcer J, Piuo PA, Walsh TJ: Pharmacokinetics and safety of a unilamellar liposomal formulation of amphotericin B (AmBisome) in rabbits. Antimicrob Agents Chemother 1994, 38:713–718.
- Wasan KM, Morton RE, Rosenblum MG, Lopez-Berestein G: Decreased toxicity of liposomal amphotericin B due to association of amphotericin B with high-density lipoproteins: role of IIa transfer protein. J Pharm Sci 1994, 83:1006-1010.
- Wasan KM, Rosenblum MG, Cheung L, Lopez-Berestein G: Influence of lipoproteins on renal cytotoxidty and antifungal activity of amphotericin B. Antimicrob Agents Chemother 1994, 38:223-227.
- Gilbert BE, Wyde PR, Wilson SZ: Aerosolized liimal amphotericin B for treatment of pulmonary and systemic Cryptococcus neoformans infections in mice. Antimicrob Agents Chemother 1992, X1466-1471.
- Gilbert BE, Wyde PR, Lopez-Berestein G, Wilson SZ: Aerosolized amphotericin B liposomes for treatment of systemic Candida infections in mice. Antimicrob Agents Chemother 1994, 38:356-359.
- Oku N, Doi K, Namba Y, Okada S: Therapeutic effed of adriamycin encapsulated in long-circulating liposomes on Meth-A-sarcoma-bearing mice. Int J Cancer 1994, 58:415–419.
- Frezard F, Santaella C, Montisci MI, Vierling P, Riess JG: Fluorinated phosphatidylcholine-based liposomes: H+/Na+ pemeability, active doxorubicin encapsulation and stability, in human serum. Biochim Siophys Acta 1994, 1194:61-68.
- Park JW, Hong K, Carter P, Asgari H, Guo LY, Keller GA, Wirth C, Shalaby R, Kotts C, Wood WI et al.: Development of anti-p815HER2 immunoliposomes for cancer therapy. Proc Natl Acad Sci USA 1995, 92:1327-1331.

Describes the coupling to liposomes of anti-p185HERZ antibodies, which retain their antiproliferative activity. Immunoliposomes are rapidly internalized via receptor-mediated endocytosis. Specific delivery of doxorubicin-loaded anti-p185HERZ immunoliposomes to tumor cells in vivo was assessed 24 h after a single intraperitoneal injection, yielding a tumor: muscle ratio of 2.69 for doxorubicin levels on the basis of percentage injected dose per gramme of tissue.

Cabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y: Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994, 54:987-992.

In this study, the pharrnacokinetics in cancer patients of Doxil (doxorubicin encapsulated in PEG-containing liposomes) at two doses, $25\,\text{mg}\,\text{m}^{-2}$ and $50\,\text{mg}\,\text{m}^{-2}$, was compared with free doxorubicin. With Doxil, -30% of the injected dose was cleared from plasma, with an initial distribution half-life of I-3 h. The rest of the Doxil was cleared slowly (second half-life of 45 h). Concomitant with the extended circulation times was an accumulation in malignant effusions, peaking between 3 days and 7 days. For free doxorubicin, the first half-life values were 0.07 h (25 mg m⁻²) and 0.06 h (50 mg m⁻²) and the second half-life values were 8.7 h (25 mg m⁻²) and 10.4 h (50 mg m⁻²).

- Cabizon A, Isacson R, Libson E, Kaufman B, Uziely B, Catane, R, Ben-Dor CC, Rabello E, Cass Y, Peretz T et al.: Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol 1994, 33:779–786.
- Vaage J, Barbera-Guillem E, Abra R, Huang A, Working P: Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 1994, 73:1478-I 484.
- Vaage J, Donovan O, Loftus T, Abra R, Working P, Huang A: Chemoprevention and therapy of mouse mammary carcinomas with doxorubicin encapsulated in sterically stabilized liposomes. Cancer 1994, 73:2366–2371.
- Vaage J, Donovan D, Loftus T, Uster P, Working P: Prophylaxis and therapy of mouse mammary carcinomas with doxotubicin and vincristii encapsulated in sterically stabilised liposomes. Eur J Cancer 1995, 31A:367-372.
- Gordon KB, Tajuddin A, Guitart J, Kuzel TM, Eramo LR, VonRoenn J: Hand-foot syndrome associated with liposome-encapsulated doxorubicin therapy. Cancer 1995, 75:2169–2173.
- 56. Bogner JR, Kronawitter U, Rolinski B, Truebenbach K, Goebel FD: lii doxorubicin in the treatment of advanced AIDS-related Kaposi sarcoma. J Acquired Immune Deficiency syndromes 1994, 7:463–468.
- Wagner D, Kern WV, Kern P: Liposomal doxorubicin in AIDSrelated Kaposi's sarcoma: long-term experiences. Clin Invest 1994, 72:417–423.
- Harrison M, Tomlinson D, Stewart S: Liposomai-entrapped doxorubicin: an active agent in AIDS-related Kaposi's sarcoma. J Clin Oncol 1995, 13:914–920.
- Huang SK, Stauffer PR, Hong K, Guo JW, Phillips TL, Huang A, Papahadjopoulos D: tiposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res 1994, 54:2186–2191.
- Unezaki S, Maruyama K, Takahashi N, Koyama M, Yuda T, Suginaka A, Iwatsuru M: Enhanced delivery and antiturnor activity of doxorubicin using long-circulating thermosensitive liposomes containing ampbipathic polyethylene glycol in combination with local hyperthermia. Pharm Res 1994, 11:1180–1185.
- Ning S, Macleod K, Abra RM, Huang AH, Hahn GM: Hyperthermia induces doxorubicin release from long-circulating liposomes and enhances their anti-tumor efficacy. Int J Radiat Oncol Biol Phys 1994, 29:827–834.
- Gill PS, Rarick M, McCutchan JA, Slater L, Parker B, Muchmore E, Bernstein-Singer M, Akil B, Espina BM, Karilo M, Levine A: Systemic treatment of AIDS-related Kaposi's sarcoma: results of a randomized trial. Am J Med 1989, 87:57-61.
- Daernen T, Hofstede G, Ten-Kate MT, Bakker-Woudenberg IAJM, Scherphof GL: Liposomal doxorubicin-induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer 1995, 61:716–721.
- Suzuki S, Watanabe S, Uno S, Tanaka M, Masuko T, Hashimoto Y: Endocytosis does not necessarily augment the cytotoxicity

- of adriimycin encapsulated in immunoliposomes. Biochim Biophys Acta 1994, 1224:445–453.
- Sela S, Husein SR, Pearson JW, Longo DL, Rahman A: Reversal
 of multidrug resistance in human colon cancer cells expressing
 the human MDR1 gene by liposomes in combination with
 monoclonal antibody or verapamil. J Natl Cancer Inst 1995,
 871123-1 28.
- 66. Perez-Soler R, Ling YH, Zou Y, Priebe W: Cellular pharmacology of the partially non-cross-resistant anthracycline annamycin entrapped in liposomes in KB and KB-V1 cells. Cancer Chemother Pharmacol 1994, 34:109-1 18.
- Zou Y, Ling H, Van NT, Priebe W, Perez-S&r R: Antitumor activity of free and liposome-entrapped annamycin, a lipophilic anthracycline antibiotic with non-cross-resistance properties. Cancer Res 1994, 54:1479–1484.

These authors assess the ability of annamycin to overcome multidrug resistance in vitro and in vivo. They report the following findings: first, MDR cell lines (KB-V1,8226/Dox,P388/Dox and CEM/VbI) display partial lack of cross-resistance to annamycin in vitro; second, liposomal annamycin is more effective than doxorubicin in the treatment of lung tumors, subcutaneous tumors, and tumors expressing the MDR phenotype in vivo; and third, MLVs are more effective than SUVs.

 Boman NL, Masin D, Mayer LD, Cullis PR, Bally MB:
 liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors. Cancer Res 1994, 54:2830–2833.

In this report, use of a low internal pH and incorporation of ganglioside G_{M1} into the liposome acts synergistically to significantly enhance the circulation lifetime of encapsulated vincristine. Therapeutic activity of the resulting liposomal vincristine preparation is dramatically improved, resulting in cures in >50% of mice inoculated with P388 lymphocytic leukemia.

- Mayer LD, Masin D, Nayar R, Boman NL, Baily ME: Pharmacology of liposomal vincristine in mice bearing 11210 ascitic and B16/BL6 solid tumours. Br J Cancer 1995, 71:482-488.
- Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD:
 Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer 1995, 72:896-904.

Significantly enhanced stability and therapeutic activity is observed with a liposornal formulation that is composed of sphingomyelin/cholesterol, with an internal pH of 4.0 or 2.0. The improved circulation lifetime of vincristine in sphingomyelin/cholesterol liposomes correlates with increased vincristine accumulation in peritoneal ascitic murine P388 tumors and in subcutaneous solid A431 human xenograft tumors. Increased vincristine delivery to tumors is accompanied by increased antiturnor efficacy with > 50% cures in mice bearing ascitic P388 tumors. Furthermore, the time required for a 100% increase in the solid mass of human A431 xenograft tumors was delayed by > 40 days compared with a delay of 7 days for free vincristine.

- 71. Allen TM, Newman MS, Woodle MC, Mayhew E, Uster PS: Pharmacokinetics and anti-tumor activity of vincristine encapsulated in sterically stabilized liposomes. *Int J Cancer* 1995, 62:199–204.
- Mayer CD, Bally MB, Loughrey H, Masin D, Cullis PR: Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 and P388 tumors. Cancer Res 1990, 50:575-579.
- Weiner AL: **Liposomes** for protein delivery: selecting manufacture and development processes. *Immunomethods* 1994, 4:201–209.
- Rudolph AS: Encapsulated hemoglobin: current issues and future goak. Artif Cells Blood Substitute Immobil Biotechnol 1994, 22:347-360.
- Tsuchida E: Stabilized hemoglobin vesicles. Artif Cells Blood Substitute Immobil βiotechnol 1994, 22:467-477.
- Zheng S, Zheng Y, Beissinger R: Efficacy, physical properties and pharmacokinetics of sterically-stabilized liposome-encapsulated hemoglobin. Artif Cells Blood Substitute Immobil Biotechnol 1994, 22:487-501.

- Anderson PM, Hanson DC, Hasz DE, Halet MR. Blazar BR, Ochoa AC: Cytokines in liposomes: preliminary studies with IL-1, IL-Z, IL-6, GM-CSF and interferon-γ. Cytokine 1994, 6:92–101.
- Bergers JJ, Den Otter W. Dullens HF, Kerkvliet CT, Crommelin DJ: Interleukin-2-containing liposomes: interaction of interleukin-2 with liposomal bilayers and preliminary studies on application in cancer vaccines. Pharm Res 1993, 10:1715-1721.
- Duits AJ, Van Puijenbroek A, Vermeulen H, Hofhuis FMA, Van de Winkel JCJ, Capel PJA: Immunoadjuvant activity of a liposomal IL-6 formulation. Vaccine 1993, 11:777-781.
- Kedar E, Rutkowski Y, Braun E, Emanuel N, Barenholz Y: Delivery of cytokines by liposomes. I. Preparation and characterization of interleukin-2 encapsulated in long-circulating sterically stabilized liposomes. J Immunother Emphasis Tumor Immunol 1994. 16:47–59
- Kedar E, Braun E, Rutkowski Y, Braun E, Emanuel N, Barenholz Y: Delivery of cytokines by liposoma. II. Interleukin-2 encapsulated in long-circulating sterically stabilized liposomes: immunomodulatory and anti-tumor activity in mice. J Immunother Emphasis Tumor Immunol 1994, 16115-1 24.

Demonstrates the superior immunopotentiating activity of liposomal IL-2 compared with free IL-2 or PEG-modified IL-2. IL-2 formulated in long-circulating liposomes is shown to be more effective than free IL-2 both in increasing leukocyte number in the blood and spleen and in triggering spleen lymphokine-activated killer-cell activity. In mice with advanced metastatic carcinoma, survival was twofold to sixfold greater with liposomal IL-2 than with free IL-2.

- 82. Bui T, Dykers T, Hu SL, Faltynek CR, Ho RJ: Effect of MTP-PE liposomes and interleukin-7 on induction of antibody and cell-mediated immune responses to a recombinant HIV-envelope protein. J Acquired Immune Deficiency Syndromes 1994, 7:799-806.
- Bui T, Faltynek CR, Ho RJY: Biological response of recombinant interleukin-7 on herpes simplex virus infection in guinea-pigs. Vaccine 1994. 12:646–652.

An in vivo demonstration that co-administration of liposomal recombinant IL-7 enhances the immunogenicity of alum-associated HSV-gD antigen and can significantly reduce the severity and course of primary HSV-2 infection.

Barna BP, Thomassen MI, Maier M, Medendrop SV, Tubbs RR, Chiang T, Zhou P, Yen-Lieberman B, Slingh-Burgess S, Deodhar SD: Combination therapy with a synthetic peptide of C-reactive protein and interleukin 2: augmented survival and cradiition of pulmonary metastases. Cancer Immunol Immunother 1994, 38:38–42.

Low doses of IL-2 can boost the therapeutic and immunomodulatory effects of C-reactive protein peptide RS-83277 MLVs in mice.

- Bergers JJ, Den Otter W, Dullens, HF, De Groot JW, Steerenberg PA, Filius PM, Crommelin DJ: Effect of immunomodulators on specific tumor immunity induced by liposome-encapsulated tumor-associated antigens. Int J Cancer 1994, 56:721-726.
- Kleinerman ES, Maeda M, Jaffe N: Liposome-encapsulated muramyl tripeptide: a new biologic response modifier for the treatment of osteosarcoma. Cancer Treatment Res 1993, 62:101-107.
- Tanguay S, Bucana CD, Wilson MR. Fidler IJ, Von Exhenbach AC, Killion JJ: In vivo modulation of macrophage tumoricidal activity by oral adminktration of the liposome-encapsulated macrophage activator CCP 19835A. Cancer Res 1994, 54:5882-5888.

Following repeated per 05 (oral) feedings of a MLV formulation of CGP 19835A, a synthetic muramyl tripeptide, these authors observe systemic activation of tissue macrophages associated with both the release of cytokines and tumoricidal activity against syngeneic murine renal cell carcinoma cells.

Fox LE, King RR, Shi F, Kurzman ID, MacEwen EC, Kubilis PS: Induction of serum tumor necrosis factor-o and interleukin-6 activity by liposome-encapsulated muramyl tripeptide-phosphatidylethanolamine (L-MRP-PE) in normal cats. Cancer Biother 1994, 9:329–340.

- 89. Asano T, McWatters A, An T, Matsushima K, Kleinerman ES: liposomal murmyl tripeptide up-regulates interleukin-la, interleukin-1β, tumor necrosis factor-a, interleukin-6 and interleukin-8 gene expression in human monocytes. J Pharmacol Exp Ther 1994, 268:1032-1039.
- Asano T, Matsushima K, Kleinerman ES: Liposome-encapsulated muramyl tripeptide up-regulates monocyte chemotactic and activating factor gene expression in human monocytes at the transcriptional and post-transcriptional levels. Cancer Immunol Immunother 1994, 38:16-22.
- Wilhelm D, Schmitt M, Hohl S, Senekowitsch R, Craeff H: Antisense inhibition of urokinase reduces spread of human ovarian cancer in mice. Clin Exp Metastasis 1995, 13:296-302.
- Tari AM, Tucker SD, Oeisseroth A, Lopez-Berestein G: Liposomal delivery of methylphosphonate antisense oligodeoxynucleotides in chronic myelogenous leukemia. Blood 1994, 84:601–607.
- Dean NK, McKay R: Inhibition of protein kinase C-α expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1994, 91:11762–11766.

Demonstrates the utility of antisense oligonucleotides as specific inhibitors of gene expression in *vivo* after systemic administration of LipofectinTM—oligonucleotide complexes.

 Tomita N, Morishita R, Higaki J, Aoki M, Nakamura Y, Mikami H, Fukamiru A, Murakami K, Kaneda Y, Ogihara T: Transient decrease in high blood pressure by in vivo transfer of antisense oligodeoxynucleotides against rat angiotensinogen. Hypertension 1995, 26:131-136.

In vivo transfection of antisense oligonucleotides results in a transient decrease in plasma angiotensinogen levels in spontaneously hypertensive rats from 1 day to 7 days after injection.

- 95. Anazodo MI, Wainbem MA, Friesen AD, Wright IA: Sequence-specific inhibition of gene expression by a novel a&sense oligodeoxynudeotide phosphorothioate died against a nonregulatory region of the human immunodeficiency virus type 1 genome. J Virol 1995, 6917944801.
- Lappalainen K, Urtti A, Soderling E, Jaaskelainen I, Syrjanen K, Syrjanen S: Cationic III m e d i a t e d delivery of antisense oligonucleotides targeted to HPV 16 E7 mRNA in CaSki cells. Antiviral Res 1994, 23:119-1 30.
- Lappalainen K, Urtti A, Soderling E, Jaaskelainen I, Syrjanen K, Syrjanen S: Cationic iiposomes improve stability and intracellular delivery of antisense oligonucleotides into CaSki cells. Biochim Biophys Acta 1994, 1196:201-208.
- Jaaskelainen I, Monkkonen J, Uriti A: Oligonucleotide-cationic liposome interactions A physicochemical study. Biochim Biophys Acta 1994, 1195:115-123.
- Puyal C, Milhaud P, Bienvenue A, Philippot JR: A new cationic liposome encapsulating genetic material: a potential delivery system for polynucleotides. fur 1 Biochem 1,995, 228:697–703.
- 100. Zelphati 0, Imbach IL, Signoret N, Zon-G, Rayner 8, Leserman L: Antisense oligonucleotides in solution or encapsulated in immunoliposomes inhibit replication of HIV-1 by several different mechanisms. Nucleic Acids Res 1994, 22:4307–4314.
- Aigner L, Caroni P: Absence of persistent spreading branching and adhesion in GAP-43-depleted growth cones. J Cell Biol 1995, 128:647-660.

Describes the use of myelin-derived liposomes to deliver antisense oligonucleotides to growth-associated protein GAP-43 to study its biological function. The findings indicate that GAP-43 promotes f-actin accumulation, evoking morphogenic activity and resistance to retraction of the growth cone.

Wang S, Lee RJ, Cauchon G, Gorenstein DC. Low PS:
 Delivery of antisense oliixyrib against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc Natl Acad Sci USA 1995, 92:3318-3322.

Convincingly demonstrates the benefits of targeted liposomal delivery of antisense oligonucleotides *in vitro*. Specific delivery to KB tumor cells of antisense oligonucleotides against human EGF receptor using

liposomes containing folate as a targeting ligand. Delivery (2×10⁷ ECF receptor molecules cell⁻¹) was enhanced 10-fold compared with non-targeted liposomes, whereas uptake of free oligonucleotides was barely detectable. Cell uptake was inhibited by the presence of 1 mM free folate. Phosphorothioate oligonucleotides and native phosphodiester DNA, when delivered via this method, exhibited similar growth inhibition activities.

Zelphati 0, Wagner E, Leserman L: Synthesis and anti-HIV activity of thiocholesteryl-coupled phosphodiiter antisense oligonucleotides incorporated into immunoliposomes. Antiviral Res 1994, 25:13–25.

Investigates the feasibility of encapsulating cholesterol-coupled antisense oligonucleotides in immunoliposomes. The authors successfully synthesize 100 nm LUVs containing 80–160 oligonucleotide molecules per liposome (with encapsulation efficiencies of 20–30%). Oligonucleotides were protected from DNase I digestion. The capacity of the modified anti-HIV antisense oligonucleotides to inhibit the replication of HIV was the same on an equimolar basis as that of unmodified oligonucleotides, as demonstrated *in vitro* using an HIV proliferation assay in acutely infected CEM cells. Furthermore, the cholesteryl-modified oligonucleotides acquire the target specificity of the antibody on the liposome.

- Shea RC, Marsters JC, Bischofberger N: Synthesis, hybridization properties and antiviral activity of lipid-oligodeoxynucleotide conjugates. Nucleic Acids Res 1990, 18:3777-3783.
- Krieg AM, Tonkinson J, Matson S, Zhao Q, Saxon M, Zhang LM, Bhanja U, Yakubov L, Stein CA: Modification of antisense phosphodiester oligodeoxynucleotides by a 5' cholesteryl moiety increases cellular association and improves efficacy. Proc Natl Acad Sci USA 1993, 90:1048-1052.
- 106. Boutorine AS, Gus'kova LV, Ivanova EM, Kobetz ND, Zarytova VF, Ryte AS, Yurchenko LV, Vlassov VV: Synthesis of alkylating oligonucleotide derivatives containing cholesterol or phenazinium residues at their 3'-terminus and their interaction with DNA within mammalian cells. FEBS Lett 1989, 254:1 29-132.
- 107. Kabannw AV, Wnogradov SV, Ovcharenko AV, Krivonos AV, Melik-Nubarov NS, Kiselev VI, Severin ES: A new class of antivirals: antisense oligonucleotides combined with a hydrophobic substituent effectively inhibit influenza virus reproduction and synthesis of virus-specific proteins in MDCK ceils. FEB.5 Left 1990, 259:327-330.
- Gu JL, Veerapanane D, Rossi J, Natarajan R, Thomas L, Nadler J: Ribozyme-mediated inhibiton of expression of leukocyte-type 12-lipoxygenase in porcine aortic vascular smooth muscle cells. Circ Res 1995, 77:14-20.

Describes the first chimeric hammerhead ribozyme active against an eicosanoid-generating mRNA. Efficient &livery into porcine aortic vascular smooth muscle cells is achiwed by transfection with cationic liposomes.

- 109. Taylor NR, Kaplan BE, Swiderski P, Li H, Rossi JJ: Chimeric DNA-RNA hammerhead ribozymes have enhanced in vitro catalytic efficiency ad increased stability in vivo. Nucleic Acids Res 1992, 20:4559-4565.
- Leopold LH, Shore SK, Mewkirk TA, Reddy RMV, Reddy EP:
 Multi-unit ribozyme-mediated cleavage of bcr-abl mRNA in myeloid leukemias. Blood 1995, 85:2162-2170.

Transfer of multi-unit ribozymes against bcr-abl mRNA into murine myeloblasts transformed with the bcr-abl gene is compared using cationic liposomes and folic acid/polylysine liposomes.

Kiehntopf M, Brach MA, Licht T, Petschauer S, Karawajew L, Kirschning C, Herrmann F: Ribozyme-mediited cleavage of the MDR-t transcript restores chemosensitivity in previously resistant cancer cells. EM60 J 1994. 13:4645-4652.

Demonstrates in vitro the feasibility of liposome-mediated transfer of hammerhead ribozymes directed against MDR-1 transcripts, reversing the MDR phenotype in human pleural mesothelioma cell lines that are vindesine or doxorubicin resistant.

- 112. Ledley FD: Non-viral gene therapy. Curr Opin Biotechnol 1994, 5:626–636.
- Miller N, Vile R: Targeted vectors for gene therapy. FASEB J 1995. 9:190–199.
- Smith JG, Walrem RL, German JB: liposomes as agents of DNA transfer. Biochim Siophys Acta 1993, 1154:327-340.
- Zhou X, Huang L: DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta 1994, 1189:195-203.
- Wrobel I, Collins D: Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim Siophys Acta 1995. 1235:296–304.

Using a lipid mixing assay, these authors demonstrate that binding to the cell surface is insufficient for fusion of the Cationic liposome with the cell and that uptake into the endocytic pathway is required for fusion to occur.

- Gustafsson J, Arvidson G, Karlsson G, Almgren M: Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim Biophys Acta 1995, 1235:305–312.
- Gershon H, Ghirlando R, Cuttman SB, Minsky A: Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry 1993, 32:7143-7151.
- Zabner J, Fasbender AJ, Moninger T, Peollinger KA, Welsh MJ:
 Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995, 270: 18997-1 9007.

Comprehensive study investigating the key cellular processes required for cationic lipid-mediated gene transfer.

Caplen NJ, Alton EWPW, Middleton PC, Dorin JR, Stevenson BJ, Gao X, Durham SR, Jeffery PK, Hodson ME, Coutelle C et al.: Liposome-mediated CFTR gene transer to the nasal epithelium of patients with cystic fibrosis. Nature Med 1995, 1:39–46.

First placebo-controlled trial of liposome-mediated CFTR cDNA transfer to patients with cystic fibrosis. The safety and efficacy of 300mg per nostril of liposome-encapsulated CFTR is compared with an equivalent dose of liposome alone. No evidence of treatment-related toxicity, either clinically or histologically, was detected in any of the treated subjects.

A Chonn, INEX **Pharmaceuticals Corporation. 1779** West 75th Avenue, Vancouver, British Columbia **V6P 6P2,** Canada.

E-mail: achonn@inexpharm.com

PR Cullis, Department of Biochemistry and Molecular Biology, The University of British Columbia, 2146 Health Sciences Mali, Vancouver, British Columbia V6T1Z3, Canada and INEX Pharmaceuticals Corporation, 1779 West 75th Avenue, Vancouver, British Columbia V6P6P2, Canada.

E-mail: pcullis@inexpharm.com