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Abstract

The recent clinical successes experienced by liposomal drug delivery systems stem from the ability to produce
well-defined liposomes that can be composed of a wide variety of lipids, have high drug-trapping efficiencies and have a
narrow size distribution, averaging less than 100 nm in diameter. Agents that prolong the circulation lifetime of liposomes,
enhance the delivery of liposomal drugs to specific target cells, or enhance the ability of liposomes to deliver drugs
intracellularly can be incorporated to further increase the therapeutic activity. The physical and chemical requirements for
optimum liposome drug delivery systems will likely apply to lipid-based gene delivery systems. As aresult, the development
of liposomal delivery systems for systemic gene delivery should follow similar strategies. [ 1998 Elsevier Science BV.
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Recent advances in liposome technologies for
conventional drug delivery have resulted in liposom-
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al drugs with proven clinical utility [1,2]. Notable
examples are liposome formulations of doxorubicin
[3,4], dl-trans retinoic acid [5], amphotericin B [6],
daunorubicin [7] and vincristine [8,9]. These ad-
vances have led to the production of well-defined,
relatively small liposomal systems that have the
ability to entrap drugs with high efficiencies, reside
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in the circulation for extended periods, and accumu-
late at regional sites of disease, such as inflammation
and tumor. The next generation of liposomal drug
delivery systems will include drug-loaded liposomes
with surface-associated targeting information that
will increase drug accumulation in specific cells, as
well as fusogenic liposomes that will enable more
efficient intracellular drug delivery.

It is anticipated that these advances in liposome
technologies will be directly applicable to the design
of liposoma systems for systemic gene delivery. In
many ways, the challenges facing the development
of liposomal gene delivery systems are not unlike
those that have faced liposomal drug delivery sys
tems. The therapeutic index of the conventional or
gene-based (plasmid DNA or RNA transcripts) drug
will be enhanced by delivering more biologically
active drug to target cells/tissues and less to non-
target cells/tissues, to avoid drug-related toxicities.
With gene-based drugs, however, delivery into
appropriate cells represents only part of the problem;
a number of intracellular barriers exist that can
inhibit the biologic activity of gene-based drugs
[10,11]. It is not clear what role, if any, liposomes
will play in overcoming these intracellular barriers.

The potential of liposomes to systemically deliver
DNA was recognized as early as the late 1970s
(extensively reviewed in [12]), however, gene-based
drugs have presented interesting challenges for sys-
temic delivery systems. First, gene-based drugs are
highly susceptible to degradation by the nucleases
present in plasma. Although liposomes have the
potential to encapsulate gene-based drugs and pre-
vent inactivation by nucleases, procedures to effi-
ciently encapsulate plasmid DNA in well defined,
small liposomes or lipidic DNA particles have only
recently been realized. Second, the efficacy of gene-
based drugs is completely dependent on gaining
entry into the target cell cytosol in an intact form.
Therefore, for liposomes to be effective, they must
incorporate agents that promote intracellular deliv-
ery. With few exceptions (i.e. skeletal muscle [13,14]
and hepatocytes [15,16]), naked plasmid DNA aone
is not taken up very efficiently by most cell typesin
vivo. Third, for certain gene therapy approaches,
such as those involving the delivery of suicide genes,
systemic gene delivery systems must have the po-
tential to selectively deliver gene-based drugs to

specific target cells. This review will highlight
several of the advances made in liposome tech-
nologies and discuss how these advances may be
applied to resolve the challenges facing the develop-
ment of liposomes for the controllable and reproduc-
ible delivery of gene-based drugs.

2. Production of liposomes for conventional
drug delivery

The mgjor advances in liposome technology in the
past decade arise from the ability to produce well-
defined liposomes composed of a wide variety of
lipids with different physical and chemica prop-
erties, having high drug-trapping efficiencies and
having narrow size distributions, averaging less than
100 nm in diameter. These physica and chemical
properties have been shown to significantly affect the
stability and pharmacokinetics of liposomes [17]. A
number of procedures have been established to
produce well-defined liposomes (extensively re-
viewed in [18,19]). These include extrusion, where
the liposomes are forced through filters with well-
defined pore sizes under moderate pressures, re-
versed-phase evaporation, sonication and detergent-
based procedures.

Another significant advance has come from the
ability to entrap drugs in liposomes with high
efficiencies while maintaining the integrity of the
liposome structure. Drug loading can be achieved
either passively (i.e. the drug is encapsulated during
liposome formation) or actively (i.e. after liposome
formation). Hydrophobic drugs can be directly in-
corporated into liposomes during vesicle formation,
and the extent of uptake and retention is governed by
drug—lipid interactions. Trapping efficiencies of
100% are often achievable, but this is dependent on
the solubility of the drug in the liposome membrane.
Passive encapsulation of water-soluble drugs relies
on the ability of liposomes to trap aqueous buffer
containing a dissolved drug during vesicle formation.
Trapping efficiencies (generaly less than 30%) are
limited by the trapped volume contained in the
liposomes and drug solubility. Another approach to
enhance the passive encapsulation of water-soluble
drugs is to impart an amphipathic nature to the drugs
by conjugating or complexing the drugs to lipids
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[20,21]. Alternatively, water-soluble drugs that have
ionizable amine functions can be actively entrapped
by employing pH gradients [22], which can result in
trapping efficiencies approaching 100%.

3. Production of liposomes for gene delivery

Based on our experience with liposoma drug
delivery systems, it is envisioned that the ideal
liposomes for systemic gene delivery will encapsu-
late plasmid DNA with high efficiencies, will protect
the DNA from degradation by plasma nucleases, will
have a narrow size distribution, averaging 100 nm or
less in diameter, in order that the liposomes can
access extravascular regions, and will have the
potential to incorporate a wide range of lipids,
especialy lipids that promote fusion with cellular
membranes and/or enhance liposome stability in the
circulation. The feasibility of passively encapsulating
DNA in liposomes was demonstrated in the late
1970s using a number of the methods indicated
above. For example, high molecular weight DNA is
entrapped in egg phosphatidylcholine liposomes by
hydrating the lipid film in the presence of DNA [23].
In a similar manner, metaphase chromosomes are
passively entrapped in, or tightly associated with,
egg phosphatidylcholine—cholesterol (7:2, mol/mol)
liposomes [24]. Alternatively, DNA can be encapsu-
lated in cochleate lipid cylinders that are formed
from the calcium-induced fusion of phosphatidylser-
ine liposomes [25]. Reversed-phase evaporation pro-
cedures have also been employed to encapsulate
plasmid DNAs with good but variable encapsulation
efficiencies [26,27]. More recently, freeze drying
methods have yielded DNA-containing multilamellar
vesicles with encapsulation efficiencies of 50-60%
[28]. For the most part, however, these procedures
yield relatively large multilamellar vesicles with low
DNA encapsulating efficiencies and generaly low
gene transfer capabilities. Extrusion of the DNA-
containing multilamellar vesicles to reduce the par-
ticle size have resulted in poor recoveries of DNA-
containing liposomes.

In the late 1980s, it was shown that cationic lipids,
when  incorporated in  dioleoylphosphatidyl-
ethanolamine (DOPE)-containing liposomes, could
enhance the efficiency of gene delivery to cultured

cellsin vitro [29] by (1) increasing the association of
plasmid DNA with liposomes and (2) increasing the
binding of cationic liposome—plasmid DNA com-
plexes to cells. This has prompted many researchers
to synthesize different cationic lipids that exhibit
improved gene transfer and cell tolerability prop-
erties [30-32], as well as to develop novel pro-
cedures to efficiently encapsulate plasmid DNA
within lipid-based carriers. The addition of plasmid
DNA to preformed cationic liposomes often results
in the formation of a heterogeneous mixture of
unstable complexes of cationic lipids and plasmid
DNA [33-35]. This heterogeneity and instability are
undoubtedly responsible for the poor reproducibility
in the transfection activity observed in vivo when
these complexes are administered intravenously [36—
39].

In the past couple of years, there have been
significant advances made in the formulation of
plasmid DNA into relatively small, stable plasmid
DNA-containing lipidic particles or liposomes that
protect plasmid DNA from degradation by nucleases.
For example, Gao and Huang [40] describe a pro-
cedure where the addition of polylysine or other
polycationic polymers to plasmid DNA, prior to or
during the addition of cationic liposomes, results in
particles with membranous structures of less than
100 nm in diameter. The plasmid DNA in the
presence of polylysine alone or polylysine and
cationic liposomes appears to be resistant to nuclease
attack, remaining supercoiled when incubated with 5
wl of fetal bovine serum at 37°C for 1 h. As
characterized by negative stain electron microscopy,
however, the plasmid DNA does not appear to be
fully encapsulated by a lipid membrane. Moreover,
the particles formed are heterogeneous in nature,
having varying plasmid DNA—polylysine—lipid
ratios that affect the transfection activity in Chinese
hamster ovary (CHO) cells in vitro. The transfection
active particle can be isolated by sucrose density
gradient ultracentrifugation and the purified particle
is reported to be stable for up to three months at 4°C,
with no increase in particle size. Similar particles can
be generated by the addition of DOPE, cholesteryl
hemisuccinate and folate—poly(ethylene glycol)—
phosphatidylethanolamine conjugates (6:4:0.01, mol /
mol/mol) to plasmid DNA—polylysine complexes
[41]. These particles were shown to be highly active
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in transfecting KB cells in vitro, being 20—30 times
more active than 3-B-[N-(N’,N’-dimethylethane)car-
bamoyl]cholesterol -DOPE, (6:4, mol/moal) cationic
liposome—plasmid DNA complexes. The stability
and pharmacokinetics of these particles upon in-
travenous administration, or the ability of these
particles to transfect cells in vivo, have not been
reported.

Recently, Hofland et al. [42] described a detergen-
t-based procedure to form stable plasmid DNA-—
lipidic particles by the addition of various amounts
of cationic lipids [2,3-dioleoyloxy-N-(2(sperminecar-
boxamido)-ethyl)-N,N-dimethyl-1-propanaminium tr-
ifluoroacetate] and DOPE (1.5:1, mol/moal) solubil-
ized in buffered 1% octylglucoside to plasmid DNA,
followed by remova of the detergent by diaysis.
The particles can be stored frozen or as a suspension
a 4°C for 90 days with no loss in transfection
activity in NIH 3T3 cells in vitro. The physical
properties of the active particles have not been
defined. However, the active particles can be pelleted
by centrifugation at 3000 g for 15 min, indicating
that they are relatively large particles. Moreover, in
vitro transfection efficiency is affected by the pres-
ence of serum, with a 70% reduction in transfection
activity in the presence of as little as 1% fetal bovine
serum in the culture medium. Another detergent-
based method that has yielded active particles has
recently been described by Liu et al. [43,44]. In this
procedure, stable emulsions of cationic lipids and
plasmid DNA are produced by the addition of non-
ionic surfactants. These particles are not well de-
fined, but are relatively large in size. The average
diameter of lipid particles for emulsions containing
various surfactants range from 170 to 250 nm. Upon
mixing with plasmid DNA, the particle size increases
five- to fourteen-fold in diameter, depending on the
type of non-ionic surfactant used for preparing the
emulsions. The use of detergents containing branch-
ed polyoxyethylene chains as the hydrophilic head
group are more effective in preventing the formation
of large DNA—emulsion complexes. The stability
and biodistribution of these particles upon intraven-
ous administration, or the ability of these particles to
transfect cells in vivo have not yet been described in
the literature.

An adternative approach that has recently been
developed takes advantage of the hydrophobic plas-

mid DNA-—cationic lipid complex formed by the
addition of cationic lipids, added in monomer or
micellar form, to plasmid DNA [45,46]. This com-
plex can serve as a well-defined intermediate in the
preparation of plasmid DNA-containing liposomes
with good properties for systemic gene delivery
applications (unpublished results). For example, the
addition of excess neutra lipids, such as
dioleoylphosphatidylcholine or DOPE, to these inter-
mediates results in the formation of plasmid DNA-
containing liposomes that have a narrow size dis-
tribution, averaging 70—-100 nm in diameter (Fig. 1).
Typically, plasamid DNA encapsulating efficiencies
of 70% are obtained using this procedure. A wide
variety of lipids that ater the biodistribution of the
liposomes can be readily incorporated into these
liposomes. For example, the incorporation of at least
10 mol% poly(ethylene glycol) conjugated to phos-

A

B

Fig. 1. Cryo-electron micrographs of plasmid DNA encapsulated
in liposomes. Panel (A) represents vesicles formed in the presence
of and (B) in the absence of plasmid DNA.
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phatidylethanolamine results in plasmid DNA-con-
taining liposomes that have a circulation half-life
approaching 10-12 h in mice. Moreover, these
DNA-containing liposomes appear to be stable in the
circulation of mice, with the mgjority of the plasmid
DNA extracted from the circulating liposomes at 24
h post-injection remaining intact.

4. Liposomes with prolonged circulation
lifetimes

The use of liposomes for systemic drug delivery
requires that the liposomes have the ability to avoid
immediate uptake by phagocytic cells of the re-
ticuloendothelial system (RES) and remain in circu-
lation for extended periods of time in order to
enhance the opportunity for the liposomal drugs to
reach non-RES target tissues. A significant advance
in the development of liposomal drugs has come
with the use of specialized lipids, such as mono-
sialoganglioside G,,, or poly(ethylene glycol) (PEG-
)-modified phosphatidylethanolamine, that engender
long circulation lifetimes when incorporated into
liposomes [47-50]. It has been proposed that these
PEG-lipid conjugates provide a ‘steric stabilization’
of the surface by virtue of the hydrophilic brush coat
provided by the PEG polymer [51]. This coat has
been shown to inhibit serum protein binding to the
liposomal surface [52,53], which would otherwise
promote uptake by the RES, complement activation
and destabilization of the liposomal membranes. It
has been demonstrated that increased circulation
lifetimes enhance the opportunity for liposomes,
administered systemically, to leave the vascular
compartment and enter certain extravascular regions
[54-56].

The ability to generate sustained circulating
liposomal gene delivery systems using the PEG-
lipid technology should prove useful for systemic
gene delivery applications. For instance, the ability
of long circulating liposomes to accumulate within
tumors will be advantageous for cancer gene therapy
applications involving tumor suppressor genes or
suicide genes. Furthermore, the avoidance of RES
uptake, especialy by Kupffer cells, the resident
macrophages of the liver, would enhance the oppor-
tunity for liposomes to deliver genes to hepatocytes,

the target cell of several gene therapies for blood
protein deficiencies.

The biodistribution of intravenously administered
cationic liposome—plasmid DNA complexes is not
appropriate for such systemic applications. For in-
stance, it has recently been demonstrated that cat-
ionic liposome—plasmid DNA complexes, exhibiting
strong positive zeta potentials, are cleared rapidly
from the circulation [57,58]. These intravenously
administered cationic liposome—plasmid DNA com-
plexes [N-(2,3-bis(oleyloxy)propyl-N,N,N-trimethyl-
ammonium chloride or dimethyldioctadecylam-
monium bromide and DOPE-containing liposomes]
are rapidly eliminated from the plasma, with 50—
60% of the dose taken up by the liver within 5 min,
and 20—30% of the dose taken up by the lung within
1 min, faling to 10% after 5 min [57]. The cationic
liposome—plasmid DNA complexes are predominant-
ly taken up by the Kupffer cells in the liver.
Moreover, a recent study has shown that cationic
lipid-DNA complexes, harboring excess positive
surface charge, are potent activators of the comple-
ment system, potentially a barrier to the efficient
delivery of genes when using high lipid doses [59].
Although there have been a few reports demon-
strating the feasibility of using these complexes to
deliver genes to a number of different tissues (such
as the liver, lung, spleen, heart, skeletal muscle,
kidney, uterus, bone marrow cells, peripheral blood
and ovary) after intravenous administration [36—
39,57,58], the observed levels of gene delivery are
low and often are not reproducible. This may be a
conseguence of the rapid elimination of the majority
of the injected dose of cationic liposome—plasmid
DNA complexes by the RES.

Our recent findings show that DOPE-containing
cationic liposomes can be stabilized in the circulation
of mice by reducing the cationic lipid content of the
liposomes and incorporating at least 2 mol% PEG-
phosphatidylethanolamine derivatives [60]. In vitro,
the addition of serum to cationic liposomes com-
posed of dioleoyldimethylammonium chloride—
DOPE (85:15, mol /mol) induces a rapid aggregation
of the cationic liposomes, forming large fused aggre-
gates (>1 pm in diameter) [60]. Amphipathic
PEG-Ilipid conjugates can stabilize DOPE-containing
liposomes by inhibiting the fusogenic activity of
these liposomes [61,62].
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However, the fusogenic activity is essential for
efficient gene ddivery [30,31,41,63,64] and, thus, an
essential property of the amphipathic PEG-Ilipid
conjugates is that they have the ability to dissociate
from the carrier at some later time, restoring the
fusogenic activity of the liposomes and allowing the
liposomes to fuse with target cells. The feasibility of
this approach has recently been demonstrated [61].
The rate at which fusogenic activity is recovered is
shown to be controlled to a large extent by the same
parameters that regulate spontaneous transfer of
lipids between bilayers.

5. Targeted delivery to specific cells

In general, liposomes are effective delivery sys-
tems because they alter the pharmacokinetics of the
free drug, leading to enhanced drug bioavailability to
specific target cells that reside in the circulation or,
more importantly, to extravascular disease regions.
The ability to selectively deliver drugs to specific
cells, such as tumor cells, within these regions will
further enhance the therapeutic index of liposomal
drugs. Targeted delivery and improved therapeutic
activity of liposomal drugsin vivo has been achieved
by coupling site-directive targeting ligands, such as
monoclona antibodies [65—68], to the surface of
liposomes by either covalent or non-covaent meth-
ods [68,69]. A significant advance in this area has
been the advent of novel PEG—phosphatidylethanol-
amine lipids that alow targeting ligands to be
conjugated at the distal ends of the PEG spacer
[70-73]. These conjugates increase target cell bind-
ing in vitro, as well as prolong circulation times.
Furthermore, in addition to antibodies, glycolipids
[74—77], proteins [78—80] and vitamins [41,71] have
been used to selectively target specific cells via cell
surface receptors.

For liposomal gene delivery systems, targeting
ligands need to function not only to increase the
binding of the liposomes to specific target cells, such
as hepatocytes, but also to promote the cellular
uptake of the liposomes via an endocytic pathway.
Endocytosis is believed to play a maor role in
plasmid DNA delivery to cultured cells in vitro
[10,63,81,82]. The feasibility of using targeting
ligands to increase the cellular uptake of plasmid

DNA-containing liposomes has recently been dem-
onstrated in vitro by a number of investigators. For
example, Lee and Huang [41] have shown that
folate, conjugated to the distal end of PEG—phos-
phatidylethanolamine, enhances the plasmid DNA
uptake and transfection efficiency of KB cells in
vitro by employing plasmid DNA-containing pH-
sensitive  DOPE—cholesteryl hemisuccinate (6:4,
mol/mol) liposomes, particularly when the lipo-
somes carry an overall negative surface charge. This
study clearly demonstrates that components which
enhance the binding of liposomes to cells, mediated
either by the use of targeting ligands or by a strong
positive surface charge, are essential for efficient
liposomal gene delivery systems. The addition of
transferrin to cationic liposome—plasmid DNA com-
plexes increases the amount of DNA taken up by
human hepatoma HepG2 cells in vitro twofold,
accompanied by a significant increase in the number
of B-galactosidase-positive cells (98-100% in the
presence of transferrin compared to 3—4% in the
absence of transferrin) [83]. Transferrin presumably
acts to further facilitate the uptake of cationic
liposome-DNA complexes via a receptor-mediated
process. Similarly, asiadofetuin [79,80] and galac-
tose-containing lipids [84] have been shown to
increase the transfection efficiency of HepG2 cellsin
vitro. Kikuchi et a. [85] have shown that the
addition of epidermal growth factor to cationic
liposomes enhances the in vitro luciferase gene
expression in epidermal growth factor receptor-over-
expressing HEC-A cells and not in epidermal growth
factor receptor-deficient HRA cells. The coupling of
antibodies to pH-sensitive liposomes [86] or to
cationic liposomes [87] has been shown to aso
enhance transfection activity in vitro compared to
that found in non-targeted DNA-containing lipo-
somes.

6. Fusogenic liposomes for intracelular delivery

Fusogenic liposomes can potentially facilitate the
intracellular delivery of encapsulated drugs by fusing
with the target cell. A variety of approaches can be
envisioned for constructing fusogenic liposomes.
Examples include the inclusion of lipids that are able
to form non-bilayer phases, such as DOPE, which



A. Chonn, P.R. Cullis / Advanced Drug Delivery Reviews 30 (1998) 73-83 79

can promote destabilization of the bilayer, inducing
fusion events [88,89]. Furthermore, aterations in the
lipid composition can render liposomes pH sensitive,
leading to enhanced fusogenic tendencies in low pH
compartments such as endosomes [41,86,90]. Non-
phospholipid fusogenic liposomes composed primari-
ly of dioxyethylene acyl ethers and cholesterol have
been shown to fuse with plasma membranes of
erythrocytes and fibroblasts [91]. Alternatively, effi-
cient fusogenic liposomes can be achieved by incor-
porating fusogenic proteins into the liposome mem-
brane [92—94] or entrapped within liposomes [95].
The feasibility of this approach has been demon-
strated for the delivery of the diphtheria toxin A
subunit using liposomes produced from influenza
virus envelopes [94]. Fusogenic peptides can be
conjugated to the liposomes [96—98] and may also
promote intracellular delivery. The encapsulation of
a 30-amino acid fusogenic peptide has recently been
shown to promote relatively efficient endosomal
release of propidium iodide, with 20-25% of the
encapsulated propidium iodide gaining access to KB
cell chromosomal DNA after 48 h [99].

The effectiveness of liposomal gene-based drugsis
dependent on their ability to access the cytosol of
target cells. For optimum efficiency, therefore, lipid-
based gene delivery systems should exhibit fusogenic
activity. A number of studies illustrate that the above
approaches to enhance the fusogenic activity of
liposomes can be applied to enhance the efficiency of
lipid-based gene delivery systems. For example, the
addition of replication-deficient adenovirus, which
enhance endosomal escape, to cationic liposome—
plasmid DNA complexes results in an approximately
fivefold increase in chloramphenicol acyl transferase
activity detected in FAO hepatoma and 3T3-F442A
adipocyte cells in vitro [100], and up to a 1000-fold
increase in luciferase expression in human smooth
muscle cells in vitro [101]. Similarly, the incorpora-
tion of the fusogenic protein from Sendai virus, by
fusing Sendai virus with preformed DNA-containing
liposomes, results in a liposome with improved gene
delivery properties [102—-104]. For the magjority of
cationic lipids, DOPE is required for efficient gene
delivery to cells in vitro [30,31,63,64]. However, the
observation that certain cationic lipids (such as
dioctadecyldimethylammonium chloride or 1,2-
dioleyloxypropyl-3-trimethylammonium bromide

propane) can function in the absence of helper lipids
[30,31] or in the presence of cholesterol (such as
dioctadecylammonium bromide) [38] suggests that
these cationic lipids may, by themselves, possess
properties that promote endosomal release of plas-
mids via a mechanism other than a membrane fusion
event. As previously mentioned, plasmid DNA-con-
taining pH-sensitive liposomes are efficient gene
delivery systems in vitro, provided that they have
targeting ligands coupled to their surface [41,86].

7. Conclusions

The development of controllable and reproducible
liposomal systems for systemic gene delivery neces-
sitates the establishment of methods to efficiently
encapsulate gene-based drugs in well-defined, rela
tively small liposomes. Traditiona methods for
encapsulating drugs in liposomes have proven to be
ineffective for gene-based drugs. However, recently
developed detergent-based procedures to produce
stable plasmid DNA lipidic particles or plasmid
DNA-containing liposomes appear promising. In
vitro studies have shown that these systems are
active in delivering plasmid DNA to a number of
cultured established cell lines. The in vivo studies
are certainly forthcoming. Although these are early
stages for liposomal gene delivery systems, several
of the advances made in liposomal drug delivery
technologies can be directly applied to these systems.
Noteworthy is the use of exchangeable PEG—lipid
conjugates to stabilize the plasmid DNA-containing
lipid-based carriers in the circulation. This should
expedite the development of systemic liposomal gene
delivery systems that exhibit targeted and enhanced
intracellular delivery.
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