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ABSTRACT: In this brief perspective, we describe key events in the history of the lipid-based nanomedicine field, highlight
Canadian contributions, and outline areas where lipid nanoparticle technology is poised to have a transformative effect on the future

of medicine.
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1. INTRODUCTION: HISTORY OF LIPID-BASED
NANOMEDICINE

A nanomedicine is a nanoscale entity that often consists of a
drug carrier loaded with therapeutic agents. The primary role
of these nanomedicines is to deliver bioactive agents to disease
sites while preventing release in otherwise healthy tissues,
thereby improving therapeutic efficacy and reducing toxicity.
In search for suitable carriers a large range of nanomaterials
have been investigated as potential nanomedicines, ranging
from inorganic metals to polymers and lipids. Throughout the
past four decades, Canadian researchers have played a central
role in nanotechnology development, particularly in the field of
lipid-based nanomedicines.

The development of lipid-based nanomedicines began with
the discovery of multilamellar liposomes by Bangham et al. in
1965." Subsequently, Gregoriadis et al. demonstrated that
drugs and proteins could be encapsulated within liposomes.” In
the 1980s, Canadian scientists enabled liposomes as a drug-
delivery system by developing a high-pressure extrusion
technique to manufacture homogeneous unilamellar liposomal
systems” and others discovered the “remote loading” process
to load weak base drugs into liposomes using a pH gradient.
Additionally, Canadian scientists explored the pharmacoki-
netics of liposomes and contributed to the “PEGylation”
technologies to prolong blood circulation of liposomes (stealth
liposomes) and improve the in vivo delivery of encapsulated
drugs.’™® The pharmaceutical potential of these liposomal
formulations stimulated the
Vancouver-based companies, including Lipex Biomembranes
(1985) to produce the Extruder, the Canadian Liposome
Company (1986) to produce Abelcet and Myocet, and Inex
Pharmaceuticals (1992) to produce Margibo and Northern
Lipids (1992) to solve drug formulation problems for clients
using lipid-based approaches. These and other commercializa-
tion efforts around the globe resulted in the rapid development
of many formulations of anticancer (Doxil, DaunoXome,
Depocyt, Myocet, Margibo), antimicrobial (Abelcet, Ambi-
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some, Amphotec), and macular degeneration drugs (Visudyne)
between 1980 and 2000s.

Liposome technology continued to evolve as gene therapy
became topical in the mid-1990s. To avoid the toxic effects of
permanently positively charged cationic lipids, ionizable
cationic lipids were introduced to enable encagsulation of
nucleic acids into lipid nanoparticles (LNPs).”'" When the
ionizable cationic lipid content exceeds the amount needed to
neutralize the negative charge on the nucleic acid, these LNPs
exhibit a “solid core” hydrophobic interior'" surrounded by a
monolayer of helper lipids such as distearolyphosphatidylcho-
line (DSPC). These LNPs are distinct from liposomes, as
liposomes have an aqueous interior. These and other critical
LNP advances were made by Canadian companies Tekmira
Pharmaceuticals (previously Inex), Protiva Biotherapeutics (a
spin-off from Inex), Precision NanoSystems, and Acuitas
Therapeutics (a spin-off from Tekmira) in collaboration with
the University of British Columbia (UBC) laboratory of Cullis.
For example, in the 2000s, Semple et al. discovered that the
potency of LNP—siRNA systems for gene silencing in the liver
could be dramatically improved by incorporating ionizable
cationic lipids with a pK,, in the region of 6.4."* Other advances
that enabled commercialization of LNP includes the discovery
of microfluidic mixing for scalable formulation of LNP systems
containing nucleic acid—based drugs."

The collaboration between Acuitas, Alnylam Pharmaceut-
icals (Boston, MA), and the UBC laboratory of Cullis was
particularly fruitful and resulted in highly potent LNP—siRNA
systems for silencing genes in the liver.* This led to the first
LNP—siRNA systems for the treatment of the hereditary
condition transthyretin-induced amyloidosis (hATTR). Fol-
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lowing a most successful clinical trial,"> Onpattro was approved
by the FDA in 2018 to treat the neuropathies associated with
hATTR and became the first systemic RNA interference
(RNAi)-based drug to receive regulatory approval.'® Starting
in 2013, Acuitas extended their development of LNP
technology to deliver mRNA to the liver, demonstrating that
LNP—mRNA systems administered intravenously could result
in gene expression in liver.'” A subsequent collaboration with
Professor Weissman (University of Pennsylvania (UPenn),
Philadelphia, PA) to investigate the potential of LNP—mRNA
systems as vaccines proved particularly successful as demon-
strated for the Zika virus.'® This success led Acuitas to
collaborate with BioNTech (Mainz, Germany) to develop an
influenza vaccine. When the COVID-19 pandemic hit in early
2020 the LNPs provided by Acuitas was chosen as the delivery
system for the development of the Pfizer/BioNTech COVID-
19 mRNA vaccine Comirnaty, which has proven to be most
effective'’ (Figure 1). Comirnaty is becoming the most
successful medicine of all time in terms of doses administered,
market size, and global impact on human health.
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Figure 1. Timeline of regulatory approval of lipid-based nano-
medicine and important discoveries contributed by Canadian
scientists (in blue). Other key discoveries in liposome and lipid
nanoparticle research (in red).

The astonishing commercial success already achieved by
drugs enabled by LNP technology developed in Canada is just
the beginning. The ability to deliver siRNA or mRNA into cells
in vivo will enable many forms of gene therapies to treat most
diseases. In the rest of this perspective, we highlight several
exciting directions for the future of LNP—mRNA therapeutics.

2. LNP-MRNA THERAPEUTICS

The very rapid development of the Pfizer-BioNTech and
Moderna mRNA (mRNA) vaccines during the SARS-CoV-2
pandemic provided an extremely effective vaccine, saving
countless lives and mitigating the economic and societal
damage of the pandemic.””** These dramatic clinical
successes have catalyzed an explosion of R&D efforts to
exploit LNP-based nucleic acid delivery approaches for a
variety of gene therapies. Here we discuss new developments
in applications of mRNA-based therapeutics and how they will
transform the future of medicine (Figure 2).

2.1. LNP-mRNA Vaccines. While the SARS-CoV-2
pandemic generated significant publicity and momentum for
LNP—mRNA vaccine development, the fundamental scientific
breakthroughs behind this novel vaccine platform unfolded
over decades. The concept behind mRNA vaccines is to trigger
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immune responses by introducing an mRNA sequence that
encodes an antigenic protein within target cells, optimally
within specialized antigen-presenting cells (APCs), to produce
a robust immune response. The path to safe and effective
mRNA vaccines, however, has been extremely challenging,
extending over the last 50 years. Fundamental problems
included avoiding the immunotoxicity of mRNA, development
of nontoxic LNP delivery systems that could encapsulate
mRNA efficiently and were also capable of delivering mRNA
into target cells in vivo, as well as problems such as production
and stability. A major breakthrough came when Kariko,
Weissman, and their colleagues at the UPenn discovered that
the replacement of uridine nucleobases with naturally
occurring modified uridines dramatically decreased the
immunotoxicity and increased the translation capacity of in
vitro transcribed mRNA.>?

An additional challenge was to find a suitable delivery
vehicle that could both protect mRNA and facilitate
cytoplasmic delivery. Many methods explored the ex vivo
loading of dendritic cells, “naked” mRNA injections, viral
vectors, and polymeric and liposomal nanoparticle formats; of
these, LNP delivery systems appear to be the leading
technology. While LNP technology was initially focused on
systemic delivery of siRNA to hepatocytes, some early reports
demonstrated that APCs were also potential targets for LNP—
mRNA delivery.”*~>® However, it was not until 2012 that the
use of LNPs for mRNA vaccines was first reported.”” In this
study, Geall and co-workers at Novartis built on the success of
the LNP formulations of siRNA and formulated a self-
amplifying mRNA in LNPs containing an ionizable lipid.””
This LNP—mRNA formulation, when injected intramuscularly
in rodents, was as potent as viral delivery technology with the
major advantage of removing the inherent limitations of viral
vectors.

Between 2015 and 2017, the potential of LNP technology
for delivery of normal (non-self-amplifying) mRNA was also
demonstrated. In collaboration with Acuitas Therapeutics, the
Weissman Lab at UPenn used LNP—mRNA systems to
evaluate the functionality of their nucleoside-modified mRNA
constructs, with a first proof-of-concept by Pardi et al
demonstrating successful mRNA expression kinetics by various
routes in mice,”® followed by a series of preclinical studies
showing that these LNP—mRNA vaccine systems could induce
potent neutralizing immune responses against viral diseases
such as Zika'® and Influenza.”” CureVac also reported success
using Acuitas” LNPs to deliver sequence-engineered mRNA to
develop an effective rabies vaccine.”> Moderna was the first to
perform a first-in-human phase I clinical trial for a prophylactic
flu vaccine composed of very similar LNPs and N1-methyl
pseudouridine (mly)-modified mRNA."” These pioneering
studies laid the foundation for LNP—mRNA vaccines, a
revolution in vaccinology, at just the right time.

To date, two mly-modified mRNA vaccines, Comirnaty
(BioNTech/Pfizer) and SpikeVax (Moderna), have received
FDA approval for use against COVID-19, and several other
mRNA vaccines are on the horizon, such as the self-amplifying
mRNA vaccine ARCT-154, designed by Arcturus Therapeu-
tics, and CureVac’s second-generation vaccine, CV2CoV,
developed in collaboration with GSK. These vaccines represent
different formats of mRNA vaccines, but they all utilize LNPs
as the delivery system.”® Interestingly, it has recently been
shown that LNPs, initially designed as a delivery system, also
act as very potent immune adjuvants.”’ This partially explains
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Figure 2. Examples of how the LNP nanotechnology enables the translation of mRNA-therapeutics for a variety of therapeutic applications.

their remarkable potency for mRNA vaccination purposes.
However, the underlying molecular mechanisms behind the
adjuvant properties of LNPs remain unclear. Furthermore, in-
depth investigation is warranted with regard to whether the
immune reactions to LNP systems can compromise the
benefits of LNP—mRNA therapeutics used for nonimmuno-
genic purposes.”” Immunogenicity of LNPs remains a subject
of debate; a potential concern that limits the long-term use of
LNP—mRNA is the accelerated blood clearance phenomenon,
which can result in a dramatic decrease in protein expression
upon second and subsequent administrations.”” However, the
latest research from Moderna’s phase 1 in human clinical trial
against Chikungunya virus showed an unchanged pharmaco-
kinetic profile and a lack of anti-PEG antibodies detected
between the first and second dose of LNP—mRNA.**

We can expect that LNP—mRNA vaccines will continue to
improve in the future; there are ample opportunities. It should
be recognized that the LNP—mRNA systems currently
employed as vaccines were largely designed to maximize
gene expression in the liver following intravenous admin-
istration. Studies to develop novel ionizable lipids and new
lipid compositions will likely allow the design of safer and more
effective LNP—mRNA vaccines. Design of LNP—mRNA
systems for different routes of administration such as mucosal
delivery is an attractive avenue for further exploration due to its
convenient route to induce mucosal immunity. LNPs have
played a major role in the success of mRNA vaccines as a result
of their very potent delivery efficiency and unique immune
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adjuvant properties. It is likely that LNP—mRNA vaccines will
be the dominant vaccines of the future.

2.2. LNP—mRNA for Reprogramming Immune Cells.
LNP—mRNA systems have many other biomedical applica-
tions beyond prophylactic vaccines. One of the most exciting
new areas of therapy in development is that of LNP—mRNA-
based chimeric antigen receptor T cell (CAR-T) immuno-
therapies. CAR-T is an immensely powerful immunotherapy
platform where patient T cells are harvested and reprog-
rammed ex vivo to express a CAR, which enables them to bind
specific epitopes on virtually any cell to target them for T cell
mediated destruction.”® CAR-T therapies have had remarkable
success in inducing long-term remission in some B cell
leukemias;>® however, this approach is greatly hindered from
broad-scale applicability due to the requirement for patient
leukapheresis, GMP facilities, and the use of viral vectors for
CAR gene delivery. To be truly transformative, the develop-
ment of an off-the-shelf CAR-T therapy will be necessary, and
LNPs ofter an avenue for delivery of CAR encoding mRNA via
LNPs directly in vivo.

A particularly exciting proof-of-concept demonstration of
this approach was published by Rurik et al.’” In this study,
mRNA encoding a CAR which targeted fibroblast activation
protein (FAP), a marker of activated fibroblasts that secrete
excessive extracellular matrix in many chronic heart conditions,
was encapsulated into LNPs decorated with a T cell targeting
anti-CDS targeting antibody. After infusion, transient FAP
CAR expression was observed in 17.5—24.7% of murine T cells
after 48 h; notably, multiple T cell subtypes were transfected.
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In a model of cardiac-injury induced fibrosis, injection of anti-
CDS—LNP—FAP CAR mRNA resulted in improved cardiac
function after injury due to reduced fibrosis mediated by in vivo
generated CAR T cell targeting of overactive cardiac
fibroblasts. Impressively, these LNP-derived CAR T cells
functioned similarly to equivalent ex vivo generated cells. This
study also highlights how CAR-T therapies have treatment
applicability beyond B cell leukemias and other cancers (in this
case, cardiac fibrosis) and many other novel applications are
conceivably possible.

Key challenges which need to be overcome to successfully
develop an off-the-shelf CAR-T therapy based on this
technology are as follows: (1) identifying similar CAR-
mRNA-LNP formulations that do not require targeting
ligands for T cell transfection, which are costly and inhibitory
for large-scale application, (2) developing CAR-based treat-
ments for both solid tumors and noncancer diseases, and (3)
engineering LNP—mRNA-based systems for generating other
CAR-expressing immune cell types such as macrophages,
natural killer cells, and neutrophils, all of which have
demonstrated activity in preclinical studies, including some
for solid tumuors.”®™*" We anticipate that the spectrum of
druggable conditions using an off-the-shelf CAR-mRNA—LNP
formulation will be enormous. We also note that reprogram-
ming of immune cells in this fashion is not limited to the
expression of CAR molecules, and most conceivable protein(s)
can be artificially expressed for reprogramming purposes.

2.3. LNP-mRNA Gene Editing. Another LNP-based
technology that has received considerable attention is an
LNP—mRNA system encoding gene-editing machinery, which
deliver proteins such as CRISPR—Cas9 and CRISPR—Cas9—
base editors to correct specific mutations in genetic diseases
when there is a single causative defective gene. A particularly
attractive aspect of using CRISPR-based gene editing
approaches is the potential for “curative” levels of gene editing
for diseases, removing the necessity for repeated treatment
infusions, and as such, this area of investigation has garnered
significant interest and investment. The progress has been
sufficiently rapid that there are now at least three clinical trials
ongoing using LNP-based delivery of CRISPR mRNA
(NCT04601051, NCT05120830, and NCT04560790). One
such trial is building on the genetic knockout of TTR, the same
target gene as the Onpattro RNAi-based LNP drug; in
preclinical studies, authors demonstrated that a single
administration of coencapsulated Cas9 mRNA and an
optimized guide sequence achieved permanent gene editing
(a gene knockout via nonhomologous end joining) in up to
60% of mouse hepatocytes, which resulted in >97% reduction
of TTR levels in the blood.”" In phase 1 clinical trial, TTR
knockout was achieved in participants receiving an mRNA
dose of 0.3 mg/k% resulting in an 80%—96% reduction in
serum TTR level,” demonstrating a rapid translation into
clinical settings.

Other efforts include using CRISPR—Cas9—base editors,
which are attractive as they can make precise alterations
without double-stranded DNA breaks, which also allows them
to be used in nondividing or slowly dividing cells. These fusion
proteins consist of a catalytically impaired Cas9 linked to a
cytidine or adenine deaminase, which can convert C/G to T/A
or A/T to G/C without requiring homologous recombina-
tion.*** An exciting application of base editors is the
development of LDL cholesterol reducing treatments by
inactivation of the PCSK9 gene. PCSK9 was identified as a
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candidate because the natural loss of function mutations (2—
3% in some populations) resulted in lowered levels of low-
density lipoprotein (LDL) cholesterol in the blood, with no
other notable health consequences;*™*" most PCSK9 is
produced in the liver, where LNP-based RNA delivery is
highly effective.”® In a recent landmark study performed in
nonhuman primates, it was shown that a single administration
of LNP CRISPR base editor mRNA with a precisely designed
guide resulted in very high levels of PCSK9 knockout in the
liver (~90%) and a resultant reduction of LDL cholesterol of
~60%. These improvements were stable for up to 8 months
after a single dose, demonstrating the powerful potential for
single treatments for cholesterol reduction and prevention of
atherosclerotic heart disease, which is the leading cause of
death worldwide.”” The potential for single-dose curative
therapies by gene editing is incredible, and these developments
are only the tip of the iceberg with regard to applications and
new treatments.

Major challenges for CRISPR-based gene editing are to
minimize off-target editing while selecting for on-target
mutagenesis; therefore, it is vital for the LNP delivery system
to both selectively and specifically deliver editing machinery to
the targeted tissues and cells. Successful on-target editing also
depends on the administration route of LNP—mRNA, which
dramatically affects LNP—mRNA biodistribution, and sub-
sequently, Cas9 protein expression and therapeutic outcome.*’
It is important not only to understand the functionality of the
LNP—mRNA platform but also to identify whether the disease
state is playing a role in LNP organ/cell tropism. Despite these
ongoing challenges for nanomedicine, new high-throughput
screening methodologies for identifying organ- or cell-specific
transfection-competent LNP formulations are being rapidly
developed and implemented,”' * and these limitations are
likely to be overcome as LNP technology further matures.

3. CONCLUSION

LNP—mRNA therapeutics are driving an explosion of advances
for the treatment of acute and chronic disease as well as
vaccines. The sheer speed at which these new therapies can be
developed is revolutionizing medicine. None of these dramatic
advances in therapeutics would be possible without the lipid
nanoparticle delivery systems described in this perspective,
highlighting the transformational role of this Canadian-
developed nanotechnology.
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