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Abstract
Type 2 diabetes is routinely identified in clinical practice by tests that rely on a hyperglycemic index. However, people at risk for
developing type 2 diabetes may not present with hyperglycemia. We identified several underlying risks for type 2 diabetes, insulin
resistance, and associated co-morbidities, using a liquid chromatography mass spectrometry–based analysis of blood metabolites,
in participants with normoglycemia and no clinical symptoms. Personalized lifestyle recommendations, including diet, exercise,
and nutritional supplement recommendations, were conveyed to these participants by a web-based platform, and after 100 days
of following their recommendations, these participants reported reductions in the health risks associated with type 2 diabetes and
associated diseases. Our comprehensive metabolite-based assay can be used for type 2 diabetes risk stratification, and our
personalized lifestyle recommendation system could be deployed as a preventative treatment option to improve health
outcomes, reduce the incidence of chronic disease, and live healthier lives in an evidence-based way.

Introduction

Recent scientific advances in multi-omics technologies are

leading to a growing number of mainstream biomedical

applications. Both metabolomics and proteomics are fast

becoming emerging “omics” sciences that involve the

comprehensive characterization of biological pathways

involved in health, disease, and longevity.1,2 For example,

the application of metabolomics has already entered the

clinic and is routinely used in newborn screening for errors

in metabolism.1 Metabolomics is increasingly being used in

scientific and clinical research to evaluate disease risks,

understand underlying pathological mechanisms, identify

novel drug targets, and personalize and monitor therapy

efficacy in both medications-based and lifestyle interventions.1

Type 2 diabetes, also known as adult-onset diabetes, is a form of

diabetes characterized by increased blood glucose levels, insulin

resistance, and low or lack of the hormone insulin in the blood.

Type 2 diabetes symptoms often initiate and progress slowly and

the individual may initially not be aware of the implications of the

symptoms they are experiencing. Type 2 diabetes can also be

classified as a “gateway” chronic disease because it can

significantly increase the risk of other chronic disease and long-

term health complications including cardiovascular diseases, such

as atherosclerosis, coronary artery disease, heart attack, and stroke;

eye diseases, including retinopathy and blindness; and kidney

diseases, including diabetic nephropathy that may lead to kidney

failure.3 Type 2 diabetes is a global epidemic and ranks among the

top leading causes of disease burden with 415 million people

suffering from the disease, and this number is expected to rise to

642 million people by 2040.3,4 Diabetes also significantly affects

quality of life as the number of years that people with type 2

diabetes are living has increased by more than one-third over the

last few decades due to the increase in age-specific prevalence and

population growth and aging.5 Specifically in North America, more

than 100 million adults are currently living with diabetes and about

one million new cases of diabetes are diagnosed every year.5,6

Type 2 diabetes is also a global economic burden costing

about $1.3 trillion or 1.8% of global gross domestic product.6

The largest costs arise from medical expenditures associated

with hospital in-patient care, prescription medications, and

diabetes supplies. However, far more reaching economic

costs are also indirectly attributed to diabetes, and its

associated co-morbidities, such as increased levels of

employee absenteeism and reduced productivity at work,

referred to as presenteeism, the inability to work as a result

of disease-related disability, and lost productive capacity due to

disease symptoms.6 It is determined that one-third of the total
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economic cost of diabetes can be attributed to absenteeism and

reduced productivity and disability at work.7

Many research studies have verified that type 2 diabetes

incidence can be prevented or delayed,8,9 and lifestyle is a

major factor in determining the risk of developing type 2

diabetes but can also be a critical piece to reversing the

disease.8,10,11 In traditional medical practice, people at risk

for developing type 2 diabetes can be identified using

common clinical measures, such as fasting blood glucose and

hemoglobin A1c levels.12 It is a well-known fact that higher

fasting blood glucose levels can predict future type 2 diabetes

and individuals with hyperglycemia (high fasting blood

glucose levels) have an annual relative risk of developing

type 2 diabetes at almost 5%.13 Because of this, physicians

routinely rely on fasting blood glucose and hemoglobin A1c

levels to identify patients for increased risk of type 2

diabetes.14 However, these tests rely on the fact that type 2

diabetes has progressed far enough that the body has lost the

ability to maintain normal glucose levels. Since blood glucose

is often the final domino to fall in type 2 diabetes, and at this

point, the individual body has likely lost the ability to properly

maintain proper glucose homeostasis and treatment becomes

more of a disease management solution.

However, these tests are unreliable for a many people who

present with normal fasting glucose and hemoglobin A1c levels.

Often, these individuals may have relevant health concerns,

such as increased weight, increased abdominal fat, high

blood pressure, improper diet and bad eating habits, and lack

of physical activity, while maintaining a normal level of fasting

glucose during routine clinical tests. In these cases, often the

medical advice is to “eat better and exercise more,” which is a

blanket advice that leaves these individuals underserved and

without proper guidance to address their nutritional and

exercise gaps. As expected, it is often the case that these

individuals, while they may attempt to eat better and exercise

more, ultimately fail at addressing these challenges and give

up, only to go through the same cycle of medical advice at their

next yearly checkup. These individuals may be unaware of

their hidden risks associated with potentially developing type

2 diabetes if their current lifestyle trends remain unchanged.

Furthermore, studies have proved that even in the presence of

normal fasting glucose and hemoglobin A1c levels, there is a

significant population at risk of developing type 2 diabetes

within a decade if left unchecked.13-15 For instance, 10% of

adults of European descent with completely normal fasting

glucose and normal hemoglobin A1c levels develop type 2

diabetes over a 5- to 10-year period.13-16 And the incidence

rate is even higher in adults from other ethnic backgrounds.

For example, adults with an Asian Indian background and

normal glucose and hemoglobin A1c levels have almost a

20% incidence rate of type 2 diabetes within a 10-year

span.17 Therefore, traditional medical techniques fail to

account for individuals who are at risk of developing type 2

diabetes and also do not account for the fact that individuals are

very unique, with unique biochemical makeups and diverse

lifestyles. Additionally, a one size fits all approach of

traditional medicine without proper nutritional and exercise

guidance does not work for most people.

As healthcare costs, life expectancy, and population of older

adults continue to rise every year, our current healthcare

delivery model is overburdened and becoming exponentially

more costly.18 There is a growing shift toward value-based

healthcare and increasing health literacy that is being

promoted by health decision-makers and stakeholders

worldwide.19-21 Value-based healthcare is a healthcare

delivery model in which health practitioners are rewarded

based on patient health outcomes. This is different from the

current model, which is a fee-for-service model, where health

providers are paid based on volume of healthcare delivery. Key

attributes of a value-based healthcare model include adopting

evidence-based care standards and protocols that represent the

best outcomes for patients, lowering costs while increasing

quality of healthcare delivery to patients, and streamlining

clinic/hospital operational processes to create better patient

care experiences through guidance and support systems.

Many studies in the last decade have identified metabolites in

blood that are associated with the development of future type 2

diabetes in individuals with normal fasting glucose levels. These

predictive plasma metabolites are often better predictors of type 2

diabetes risk than the conventional clinical measures used by

most physicians, as these metabolites are intricately linked with

earliest changes in the relevant biological pathways involved in

insulin resistance and type 2 diabetes development. These

metabolites include alterations in lipid oxidation, amino acid,

and sugar metabolism.22-29 The organ sites of these biological

pathways include the liver, heart, and muscles, which are prime

targets for nutrition and exercise interventions for organ

protection and prevention of disease. Recent studies have used

these metabolites in blood as a means of developing statistical

models to predict the risk of type 2 diabetes.30 We take this

concept even further by not only analyzing these blood

metabolite indicators of disease but also integrate each

individual’s unique characteristics and medical history to

develop personalized molecular signature profiles, which

enable us to compute their risk of developing disease, including

type 2 diabetes even when they have normal fasting glucose and

hemoglobin A1c levels and are deemed not to be at risk by

physicians. We can leverage these personalized molecular

signature profiles as training datasets for our machine learning

efforts to automate and enhance the identification of individuals

at risk for type 2 diabetes development. We have also developed

a comprehensive curated database around dietary, exercise,

and nutritional supplement recommendations based on

metabolomics that we can link to each individual’s molecular

signatures to recommend personalized lifestyle interventions to

potentially mitigate disease risk.

We believe the future of medicine requires a more proactive

personalized and value-based approach leveraging the

advantages of multi-omics and AI technologies to detect early

indicators of disease, divert disease development before

symptoms manifest, and help patients improve their health

outcomes and live healthier lives in an evidence-based way.1,2,31
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Methods

Metabolomics quantification

Unlike genomics, in which a single instrument is often

sufficient to perform the necessary analysis and interpretation

of results, metabolomics requires a broad array of

instrumentation and software packages for analysis.

However, over the last decade, three experimental techniques

have emerged as the primary workhorses that allow accurate

and reproducible metabolomics quantification robust enough

for clinical use: nuclear magnetic resonance spectroscopy,

gas chromatography mass spectrometry, and Liquid

Chromatography Mass Spectrometry (LCMS). Each

technique provides broad coverage of many classes of

organic compounds, including lipids, amino acids, sugars,

biogenic amines, and organic acids. However, given the need

for quick, accurate, and reproducible absolute quantification in

clinical environments, a recent emerging trend in

metabolomics has been heightened emphasis on

quantification and automation, which serve not only to

increase data throughput but also increase reliability and

reproducibility.32 Furthermore, these parameters are critical

for eventual clinical test adoption and regulatory approval.

This push toward automation and clinical adoption is now

well underway specifically with LCMS-based multi-omics

analysis.2,33 We analyzed the metabolomics of our study

population using standard LC-MS-based techniques already

developed and published in many scientific publications.1,34,35

Study population and study design

We analyzed a total study population of 40 healthy participants

who self-reported with no diagnosed diseases and no apparent

clinical symptoms at the time of testing. The study population

consisted of an almost equal group of males and females (55%
female vs 45% male) and an age range of 28-65 years old. We

collected and analyzed blood samples from the participants at

time point 1, also referred to as baseline. The sample collection

was done after an 8-hour fast and 24-hour no vigorous physical

activity. The blood samples were analyzed by LC-MS-based

metabolomics techniques, and health reports were delivered to

all participants by a web-based reporting platform. Their health

reports included a number of lifestyle recommendations based

on analysis of their metabolite biomarker levels and health

risks of various diseases (based on statistical computations of

metabolites associated with risks of disease which we used to

create individual molecular signatures of disease). Lifestyle

recommendations, which we also refer to as an action plan,

include personalized diet, exercise, and nutritional

supplement recommendations that take into account not only

each participant’s metabolite levels but also their dietary

preferences, food allergies, and any exercise limitations (such

as injury). All participants were given 100 days (approximately

3 months) to follow their personalized action plans before

a subsequent blood sample collection, and analysis was

performed (time point 2) using the same procedure (8-hour

fast and 24-hour no vigorous exercise) and analytical

methods. Similar to the initial test, all health reports were

delivered to all participants by a web-based reporting

platform. We compared the health risks and metabolite

biomarker levels from both of their reports and assessed

whether our personalized lifestyle recommendations had an

impact on the participants’ health risks.

Results

Most participants have normal fasting glucose levels

We analyzed fasting blood glucose concentrations in our study

population of healthy volunteers using LCMS-based

metabolomics analysis. We found that the majority of the

participants have normal fasting blood glucose levels, with

concentrations within the normal physiological ranges of

4,000-6,000 μM, while a small number of individuals had

slightly low levels, below 4,000 μM. However, these low

levels were not below the threshold to be categorized as

hypoglycemic, which is fasting glucose levels below 3,900

μM in the blood. Therefore, these individuals would not be

classified as “at risk” for diabetes under the conventional

clinical tests that rely on the hyperglycemic index.

Study cohort with normal fasting blood glucose has
elevated health risks

Of our study population of healthy volunteers, a small cohort of

28 individuals with normal fasting blood glucose levels were

found to have increased risk of insulin resistance and type 2

diabetes, as determined by our metabolomics analysis and

personalized molecular signature profiles (Figure 1). Within

this cohort, seven individuals were determined to have a high

risk of type 2 diabetes, as determined by our metabolite

signature profiles (Figure 1). Furthermore, our analysis

revealed that these individuals also had risks in a number of

other well-known diabetes-related co-morbidities including

Alzheimer disease, metabolic syndrome, liver and kidney

disease, and cardiovascular diseases, such as atherosclerosis,

heart attack, and hypertension. It becomes very clear that

insulin resistance and type 2 diabetes have the potential for a

combined detrimental impact on the cardiovascular system,

liver, brain, and kidneys.

Health intelligence reporting platform for health risks
and health insights

We have developed a web-based health reporting platform that

displays each participant’s health risks colour coded by three

risk stratifications: normal risk (in green), moderate risk (in

yellow), and high risk (in red). Each participant receives a

web-based health report where their health conditions are

colour coded and ranked in descending order from high to

moderate to normal risk. The same colour-coding is used for

each metabolite biomarker where green represents metabolite

levels within normal physiological range, yellow for metabolite

levels slightly above or below normal range, and red for
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metabolite levels above or below normal range. For example,

the metabolite glucose would be reported in green if it is within

its normal physiological range (4,000-6,000 μM), in yellow if

its slight above this normal range, and in red if above 7,000 μM

(hyperglycemia) or below 3,900 μM (hypoglycemia).

Our health intelligence reporting platform also allows users

to explore and pinpoint the different metabolite biomarkers that

are outside of their normal ranges and contributing to their

elevated risks of disease (Figure 2). This tool also allows

users to explore their diverse network of metabolite

biomarkers and how they are linked to their various health

risks. This also allows users to understand that perturbations

in the levels of one biomarker may have a multitude of effects

when it comes to disease risk. Our health Intelligence platform

can also group these metabolite biomarkers according to their

biological functional role. For example, biomarkers associated

with inflammation or involved in immune health can be

grouped and analyzed together in our platform. This can give

early insights into each participants’ health status that may not

have yet manifested as health risks or clinical symptoms that

could be measured by conventional medical tests.

Health intelligence platform action plan

Our health intelligence platform outputs personalized lifestyle

recommendations, based on data analysis of a participant’s

metabolite biomarker levels and health risks of various

diseases (based on statistical computations of metabolites

associated with risks of disease which we used to create

individual molecular signatures of disease). Lifestyle

recommendations, referred to as an action plan, include each

participants’ personalized diet, exercise, and nutritional

supplement recommendations that take into account not only

each participants’ metabolite levels but also their dietary

preferences, food allergies, and any exercise limitations. This

action plan is also delivered to them by our web-based and

mobile app platforms. A representative action plan displayed

on a mobile app is outlined in Figure 3. Both the web and

mobile app platforms allow users to quickly retrieve their

personalized diet and exercise recommendations, such as “to

consume one serving of beans, chickpeas, or lentils two times

weekly” and “15-20 minutes of continuous dance and brisk

walks four times weekly.” These specific recommendations

are generated by our web platform and are reviewed by our

team of health practitioners and health scientists before being

released to users. Although not shown, users will be able to

build a grocery shopping list from their shortlist of foods from

their diet recommendations. And users will be able to use the

web platform to construct, either by themselves or with the help

of a health coach, weekly meal and exercise plans using their

specific diet and exercise recommendations and can adjust the

servings and frequency as needed.

Normalization of health risks and biomarker levels
following 100-day action plan period

We analyzed and compared the health risks and biomarker

levels of our study population reported by our platform

before and after participants completed their action plans

(Figure 4). We had previously developed a proprietary

method of computing risk based on two factors: (1) the

number of metabolite biomarkers that are associated with a

Figure 1. Subset of individuals in our study cohort had a number of health risk conditions despite having normal fasting blood glucose levels
(top). This chart displays the fasting blood glucose levels of the individuals in our study cohort (bottom). The height represents the number of
related health risk conditions, and the colours represent the risk for developing type 2 diabetes, specifically red for high risk and yellow for
moderate risk, as determined by our metabolomics analysis and personalized signature profiles.
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specific disease or biological function with a measured

concentration that is outside of normal physiological ranges

and (2) the strength of scientific evidence that supports each

biomarker’s association with the specific disease or biological

function.2 This allows us to calculate a risk score (referred to

“risk grade”) for each specific disease and biological function

which we used to identify changes to the study participants’

health status. Before their action plan recommendations,

several of the healthy participants had various health risks

and biomarkers associated with aberrant biological systems

were identified, including high and moderate risk scores in

cardiovascular diseases, insulin resistance, type 2 diabetes,

metabolic syndrome, and perturbations with biomarker levels

associated with inflammation, immune health, and dietary

health. The computed risk grade is relatively high, especially

for insulin resistance, type 2 diabetes, metabolic syndrome, and

cardiovascular disease (Figure 4; left). After the completion of

their action plan, all study participants had decreased their

health risks for these reported conditions. Furthermore, many

biomarker levels associated with functional biological systems,

such as inflammation, immune function, and dietary health,

also showed reduced risks in the participants’ second

assessment (Figure 4; right).

Discussion and recommendations

If physicians and health practitioners were to solely rely on the

traditional clinical tests of using fasting blood glucose levels as

the only method to identify the risk of future type 2 diabetes,

there is a potential for mis-categorizing patients who may be at

significant risk of developing the disease. In our study, we

identified a group of individuals who present with normal

fasting blood glucose levels that were identified to have

several early indicators of risks to their health, including type

2 diabetes, insulin resistance, and diabetes-associated co-

morbidities, such as cardiovascular diseases (Figure 1).

Furthermore, these study participants did not self-report any

diseases or clinical symptoms during the initial intake for

blood sample collection. However, looking at the different

health risks and biomarker levels, it is easy to come to the

conclusion that although these individuals were not

experiencing any clinical symptoms related to type 2

diabetes, disease development may have been initiated and

the progress of declining health was unknown to the

individual. Their risk of type 2 diabetes and deteriorating

health may only become apparent when symptoms may

appear in the future or fasting glucose levels suddenly

Figure 2. Our health intelligence platform allows users to visualize their biomarkers with abnormal physiological levels and explore how these
biomarkers are connected to their body’s network of health risks and organ systems. In this representative example, the user is able to explore
the various abnormal biomarkers associated with their elevated risk of pre-diabetes. So far, the biomarkers all cluster together to contribute to
this elevated risk; however, we can also see some biomarkers also clustering closer to other organ systems, such as brain and kidney health.
Users can select brain or kidney health to see the connecting biomarkers that were also part of the pre-diabetes risk. The strength of evidence
for each of these links between biomarkers and health risks and organ system is represented by increasing thickness of the dotted lines. The
thicker the dotted line, the more scientific evidence is present that positively correlates abnormal levels of that biomarker with that specific
health risk or organ system dysfunction.
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become too high. However, at the stage where clinical

symptoms appear, it may be far more difficult to reverse the

damage that has already occurred and many individuals may be

forced to manage the disease through medication.

As mentioned, type 2 diabetes is also associated with a

number of co-morbidities, including cardiovascular, liver,

and kidney diseases.36 In our analysis, we readily found

moderate and high risks for a number of associated

conditions, including Alzheimer disease, atherosclerosis,

heart attack, metabolic syndrome, rheumatoid arthritis, liver

cirrhosis, and chronic kidney disease. Even without the loss

of glycemic control and no clinical symptoms, our study

participants had perturbations in metabolites associated with

these specific diseases. Therefore, it becomes more prudent

to investigate early perturbations of metabolites to not only

prevent type 2 diabetes but also to prevent many of these

associated co-morbidities.

We developed a web-based reporting platform that

identifies these various health risks and health insights for

each participant. Our reporting platform also allows users to

explore their metabolite levels and how these metabolites

interconnect with their health risks and organ systems

(Figure 2). Participants can also explore how the different

metabolite biomarkers are interconnected by their relative

network links, all of which may be contributing to their

elevated risk of disease. Our platform can also group these

metabolite biomarkers based on their functional roles which

provide insights into each participants’ health status,

particularly when it comes to inflammation, immune health,

and nutritional status, for example. Our hope is that patients,

physicians, and other health practitioners will be able to use the

web-based platform to explore the interconnectedness of

metabolite biomarkers and how they may be impacting

health status and disease risks.

As the participants in our study have normal fasting blood

glucose levels and present with no clinical symptoms, it does

not make sense to recommend medications for their type 2

diabetes or other health risks. Instead, our platform also

leverages a comprehensive curated database of lifestyle

recommendations, specifically diet, exercise, and nutritional

Figure 3. Representation of a diet and exercise action plan recommendation for an individual with high risk for type 2 diabetes in our health
intelligence platform. Our platform can recommend nutrition, exercise, and supplement actions from our comprehensive database for
individuals to follow to potentially mitigate their risks of disease. Users can also explore each of the different actions on our mobile app to
see how they are linked to disease risks or biomarkers, such as metabolites, that are being targeted by their personalized lifestyle
recommendations.
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supplement that have been shown to influence specific

metabolite levels according to scientific research, to develop

a personalized action plan for each participant. Each action

plan is reviewed by our team of health professional and

health scientists before being released to the participants so

as to verify the accuracy and validity of the information. An

example of an action plan that may be reported to one of the

participants is outlined in Figure 3. Each action and lifestyle

recommendation is linked to the specific health risk or

metabolite that it is supposed to impact and is clearly shown

to the participant, through user-friendly and easy-to-navigate

web and mobile app platforms (Figure 3).

Our health intelligence platform can aggregate metabolites

together that are involved in specific disease risks and compute

risk scores on a proprietary algorithm based on the number of

metabolites that are outside of their normal biological ranges

and on the strength of the research evidence. We performed an

aggregate analysis of all our study participants at time point 1

(baseline) to show the average computed risk scores for each

health risk levels identified on our platform through

metabolomics analysis. We noticed that proportion of our

study participants had moderate and high risks for insulin

resistance, type 2 diabetes, and cardiovascular diseases,

including heart attack and atherosclerosis (Figure 4).

However, a similar aggregate analysis of our study

participants at time point 2, where the participants were able

to follow a personalized lifestyle action plan for 100 days,

reveals that most of the health risks have decreased scores

and none indicates low risk (Figure 4). Our platform also

enables us to explore specific metabolite biomarkers that

were previously outside of normal range, and we were able

to confirm that these outlying metabolites in time point 1 had

indeed returned to normal ranges after the action plan period

and hence reduced potential health risks in time point 2 (data

not shown).

Our platform can also group metabolites together that are

involved in specific biological functional roles, such as

inflammation, dietary health, and immune function, and

similarly compute risk scores based on the number of

metabolites that are outside of their normal biological ranges

and on the strength of the research evidence. When we looked

at an aggregate analysis of all our study participants at time

point 1, we are able to see that metabolites associated with

several functional pathways, such as inflammation, immune

health, and dietary health, are reported to be perturbed by our

platform, as indicated by a high computed risk score, for study

participants at time point 1. A similar aggregate analysis of all

our participants at time point 2, where the participants were

able to follow a personalized lifestyle action plan for 100 days,

reveals that metabolites in the majority of their functional

pathways, including inflammation, immune health, and

dietary health, have returned to their normal physiological

Figure 4. Aggregate data analysis of health risks and biomarker functional groups of study participants shows that many risks decreased in the
second assessment (left). We computed risk scores for a number of health risks for our study participants, including insulin resistance, type 2
diabetes, cardiovascular disease, Alzheimer disease, metabolic syndrome, and arthritis. These health risk scores for various diseases were
reduced in the second time point, particularly insulin resistance, type 2 diabetes, cardiovascular disease, and metabolic syndrome (right). We
also computed risk scores for biological functions for our study participants, such as inflammation, dietary health, immune health, cognitive
health, and liver health. Perturbations to many of these biological systems were also reduced in the second time point, particularly inflammation,
dietary health, and immune health.
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levels (data not shown) and thereby contribute to a reduced risk

score for these functional pathways (Figure 4). Interestingly,

risk scores for Alzheimer disease show a slight increase in the

participants’ second assessment. We attribute this slight

increase to noise in the risk computations and did not deem

as significant. We also determined this increase is not material

since we did not see a substantial increase in risk scores for

cognitive health.

Although for this study we were not able to track the

participants to verify their adherence to their action plans, the

results show there is still quite a substantial shift and

improvement in health assessments from what the analysis

revealed from their first test. It is important to also mention

that although many of the health risks and biomarkers returned

to no risk and normal levels (data not shown) and computed

risk scores decreased (Figure 4), respectively, not all

biomarkers were influenced by the action plan. Several

nutrition-associated biomarkers are still outside of the normal

ranges in the second test. It could be that some biomarkers are

not as readily influenced by diet and exercise changes or it may

also be likely that certain biomarkers require more than the 100

days to normalize, and a longer term strategy of healthy

lifestyle support system is needed. With that being said, we

believe our metabolite-based assay health risk and lifestyle

recommendation platform is a novel and significant tool for

health professionals and health leaders to use to identify

individuals who are on early trends toward disease and adopt

a more proactive and preventative approach in their clinical

practice. As traditional medicine routinely employs a one

size fits all approach, we believe our platform and

comprehensive panel of biomarkers will help usher in a more

personalized side of healthcare that can be tailored specifically

to each unique individual.

Furthermore, with an aging demographic that is growing

larger and larger every year with a life expectancy that

continues to rise as well, the incidence of chronic disease is

projected to increase, thereby increasing the financial demands

on our already burdened healthcare system.18 A central

challenge to our healthcare system in the near future will be

the implementation of new approaches in healthcare delivery to

address the changing and complex health needs of this aging

population. We believe the healthcare system must seriously

consider a multidisciplinary evidence-based and personalized

approach to ensure patients are receiving better case

management and attention to their unique aspects of care.

The benefits of a value-based healthcare system that is also

focused on the preventative rather than reactive will be of

value to patients, healthcare practitioners, payers, and

suppliers. Value-based healthcare models focus on helping

patients recover from illnesses more quickly and aim to

avoid chronic disease in the first place. As a result, patients

face fewer clinic or hospital visits, medical tests, and

procedures and spend less money on prescriptions. Although

healthcare practitioners may need to spend more time on new,

prevention-based services, such as our biomarker-based risk

assessment and lifestyle platform, they will spend less time

on chronic disease and long-term disability management. In

addition, the metrics around quality and patient engagement

will improve when the focus is on delivering value instead of

volume. Insurance companies know that risk can be reduced by

diversification, or in other words, spreading the risk across a

larger patient population. A healthcare system that strives to

identify and reduce chronic disease incidence will translate to a

healthier population and less risk on payers’ investments.

Suppliers will benefit from aligning their products and

services with positive patient outcomes and reducing their

costs. Many healthcare industry stakeholders are calling on

manufacturers to tie drug prices to their actual value to

patients, a process that is likely to become easier with the

shift toward personalized medicine.

Moving away from the traditional medical norms of fee-for-

service model and fixed prescriptive protocols for patients to a

more proactive, preventative, and personalized focus on

improving patient health outcomes via a value-based model

may take time and a concerted effort from multiple

stakeholders and players in the healthcare industry. As the

healthcare landscape continues to evolve and providers

increase their adoption of value-based healthcare models, it

would not be surprising to see short-term financial losses

before we see longer term costs decline. However, industry

transition toward delivering value to patients is the best

method for lowering healthcare costs while increasing quality

care and helping people lead healthier lives.
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